
August 2008

EPL, 83 (2008) 40002 www.epljournal.org

doi: 10.1209/0295-5075/83/40002

Localization by entanglement
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Abstract – We study the localization of bosonic atoms in an optical lattice, which interact in
a spatially confined region. The classical theory predicts that there is no localization below a
threshold value for the strength of interaction that is inversely proportional to the number of
participating atoms. In a full quantum treatment, however, we find that localized states exist for
arbitrarily weak attractive or repulsive interactions for any number (> 1) of atoms. We further
show, using an explicit solution of the two-particle bound state and an appropriate measure
of entanglement, that the entanglement tends to a finite value in the limit of weak interactions.
Coupled with the non-existence of localization in an optimized quantum product state, we conclude
that the localization exists by virtue of entanglement.
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Spatial localization of quantum interacting particles
and formation of bound states are of fundamental
interest to modern physics. One intriguing aspect is the
correspondence between localized states in classical and
quantum-mechanical theories [1]. Usually, one expects
quantum fluctuations to weaken localization, as the
binding of particles with an attractive but shallow
pair potential can be inhibited by quantum-mechanical
zero-point motion. Then, localization can be interpreted
essentially as a classical property that would emerge in
a quantum system due to decoherence [2]. On the other
hand, it was recently suggested that localization of quan-
tum particles may be achieved when they are entangled
through suitable measurements [3]. Here, we consider the
role of entanglement in the localization of specific eigen-
states of a multiple-boson system, e.g. the ground state.
Specifically, we show that spatially confined interaction
between atoms in an optical lattice induces entanglement
and leads to localization, while the corresponding clas-
sical atomic field fails to localize. Remarkably, the effect
that we demonstrate in this letter does not depend on
whether the interaction is attractive or repulsive. Recent
experiments on the formation of repulsive atomic pairs on
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optical lattices [4] imply the possibility of experimental
observation of the effect reported here.
If a translationally invariant lattice with interactions is

considered, its classical limit allows for localized solutions
known as lattice solitons or discrete breathers [5]. A
particular realization of such a system is a Bose-Einstein
condensate (BEC) in an optical lattice [6]. Due to the
band structure with Bragg reflection gaps in the optical
lattice, localized soliton solutions are possible not only
with attractive but also with repulsive interactions.
Experimental evidence for the band gap solitons with
repulsive BECs has been reported for one-dimensional
lattices [7]. For two- and three-dimensional lattices the
classical theory predicts non-zero energy and parti-
cle number thresholds for the existence of band gap
solitons [8], as opposed to the case of dimension one.
Quantum effects in this system are expected to be most
dramatic for a small number of particles [9,10]. The
extreme quantum limit of a three-dimensional lattice has
been realized in the experiment of Winkler et al. [4],
where bound pairs of repulsively interacting atoms have
been reported using spectroscopic tools. According to
quantum theory, these quantum solitons describe bound
states of atoms that delocalize spatially [11–13]. It is
an open question, whether these observed bound states
persist below the above-mentioned classical threshold.

40002-p1



J. Brand et al.

In this letter we study localization of atoms in an optical
lattice, where interactions between atoms are present in a
spatially confined region only. This can be achieved exper-
imentally by tuning the s-wave scattering length by the
Feshbach resonance with inhomogeneous magnetic [14,15]
or laser fields [16,17]. We show that localization occurs
in the full quantum system when it is forbidden classi-
cally. The crucial difference between the quantum and the
classical models is the presence or absence of entangle-
ment (see [18–20]) between the constituent particles. The
predicted quantum localization is due to entanglement.
For the case of two particles we quantify the entanglement
and show that it reaches a finite value in the limit of weak
interactions. Beyond the specific model studied we also
comment on the relation between entanglement in eigen-
states, localization, and the existence of bound states for
higher-dimensional and translationally invariant systems.
It is worth mentioning here that bound states for two elec-
trons (fermions) in the negative hydrogen ion also appear
only in the presence of quantum correlations beyond the
Hartree-Fock approximation [21].

The model. – We initially consider the dynamics
of atoms in a one-dimensional optical lattice in which
the atoms interact in a spatially confined region. The
Hamiltonian is given by

H =−
∑

n

(a†nan+1+ a
†
n+1an)+λa

†
0a
†
0a0a0, (1)

where a†n (an) creates (destroys) a boson on the lattice site
n and bosonic commutation relations [an, a

†
m] = δnm hold.

The Hamiltonian (1) describes bosonic atoms on a lattice
that interact either repulsively (λ> 0) or attractively
(λ< 0) only on the single lattice site n= 0. Single atoms
with the Hamiltonian (1) on a lattice with M sites and
periodic boundary conditions do not localize and the
eigenstates are plane waves 1/

√
M
∑
n exp(ikn) a

†
n|vac〉,

where |vac〉 is the vacuum state (no particles). However,
with more than one particle localized states may exist
around the site n= 0. In this current model the binding
of particles implies spatial localization and vice versa.

Classical treatment. – The quantum Hamiltonian (1)
can also be understood as posing a classical Hamiltonian
lattice problem if we replace the particle creation and
destruction operators by complex valued functions of time.
In order to enable a detailed comparison between classical
and quantum predictions it is necessary to establish the
precise relation between both pictures. An unambiguous
route to relate the classical with the quantum problem can
be found by the Hartree ansatz and variational procedure:
For the many-body wave function with N particles we use

the ansatz of a product state |Ψ(N)H 〉= 1/
√
N ! (b†)N |vac〉,

where b† = 1/
√
N
∑
n ψ
∗
na
†
n creates a single particle with

the complex amplitude ψn on the lattice site n. The corre-
sponding equation emerges from the standard Lagrangian
variational procedure with g= 2λ(N − 1)/N assuming

normalized solutions with
∑
n |ψn|2 =N . This equation is

the discrete non-linear Schrödinger (DNLS) model with
non-linearity present only on the site n= 0,

i
∂

∂t
ψn =−(ψn+1+ψn−1)+ gδ0,n|ψ0|2ψn. (2)

This model was originally introduced to study the trans-
port of electrons coupled to lattice phonons [22]. The
model also applies to BECs in an optical lattice and
has been discussed in connection with Fano resonances
in the transport of cold atoms [23]. Here, ψn describes the
complex matter wave field at the lattice site n after the
introduction of appropriately rescaled dimensionless vari-
ables. N =

∑
n |ψn|2 is the number of atoms in the BEC.

We have now used the Hartree procedure to derive
the set of classical equations (2) from the quantum
problem (1). The same set of equations (2) would have
also emerged from a more standard approach using a
coherent-state ansatz for the many-body wave function.
However, the Hartree procedure here serves a dual purpose
in also characterizing the classical equations (2) as an
approximation to the quantum problem that provides
strict variational bounds for the latter.
The model of eq. (2) supports plane-wave solutions in

the linear (g= 0) case,

ψ(pw)n =ψ0 exp(ikn) exp(−iωt) (3)

with the dispersion relation ω=−2 cos k defining a band
continuum [−2, 2]. In addition, for non-zero g, there are
localized solutions

ψ(loc)n =Ae−δ|n|e−iΩteiθn, (4)

with Ω=−Ng, where the frequency |Ω|= 2 cosh δ > 2 lies
outside the linear band. Furthermore, θ= 0 for the attrac-
tive interactions g < 0, where the localized solution is the
ground state, whereas θ= π for the repulsive interactions

g > 0 introduces a staggered phase profile and ψ
(loc)
n corre-

sponds to the highest excited state. From the expres-
sion A2 =

√
N2− 4/g2 for the amplitude, we find that the

system exhibits a threshold for the existence of localized
states [22], which are only found forN > 2/|g|. Since g may
be tuned to any small value, the threshold for the number
of particles can be made arbitrarily large. Conversely, for
a given number of particles, there is a threshold value of
g for localization to occur. Figure 1 shows the depen-

dence of the energy E
(N)
class =

∑
n−(ψ(loc)n−1 ψ

(loc)∗
n +c.c.)+

g
2 |ψ(loc)0 |4 = 2

g
+ N

2g
2 on the coupling constant in the case

of N = 2 particles. In particular, no bound state is found
classically in this system if |g|< 1.
Quantum case of two particles. – We study the

two-particle sector, where we expect to find the most
obvious deviations from the classical theory. In order to
solve for the eigenstates |Ψ(2)〉 of the Hamiltonian (1)
for two-particles, we introduce the projected amplitudes
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Fig. 1: Relation between energy and coupling constant for
two-particle defect states. The dashed line shows the classical
(Hartree) solution E

(2)
class = 2(g+

1
g
). The shaded region at

E >−4 indicates the edge of the continuum band of linear
waves. At the classical threshold of g= 1 (the dotted line) the
classical solution reached the continuum edge. The solid line
shows the exact solution E(2) of the two-particle problem of
eq. (8), which persists even below the classical threshold down
to zero coupling.

or two-particle wave functions ϕn,m = 〈vac|anam|Ψ(2)〉,
which obey the equation

Eϕn,m = −(ϕn,m+1+ϕn,m−1+ϕn+1,m+ϕn−1,m)
+ 2λδn,0δm,0ϕ0,0. (5)

This can be interpreted as the Schrödinger equation of a
single particle on a two-dimensional lattice with a point
defect at the lattice site (0,0). The problem is known to
have a localized solution for any non-zero value of λ [24].
Introducing the Fourier transform

χk =
1

M

∑

m,n

e−i
2π
M (k1n+k2m)ϕn,m, (6)

for a square lattice of M ×M sites with k= (k1, k2) being
the quasimomentum vector, eq. (5) becomes

χk =
1

E−Ek
2λ

M

∑

k′
χk′ . (7)

Looking for localized solutions with |E|> 4 lying outside
the band of plane-wave energies Ek =−2(cos 2πM k1+
cos 2π

M
k2), we find in the limit M →∞

λ=
1

2F (E)
, F (E) =

2

πE
K(16/E2) (8)

for the relation of the coupling parameter and the bound-
state energy E (see fig. 1). Here,K is the complete elliptic
integral of the first kind. It is important to emphasize
that for 4> |E|> 4.05753 one has |λ|, |g|< 1 and thus no
classical localized states persist. However, in the quantum
case the asymptotic relation,

E(|λ| →∞)→ 2λ, |E(|λ| → 0)| → 4+ e− 2π|λ| , (9)
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Fig. 2: Two-particle wave function (top panels: |ϕnm|, bottom
panels: ln(|ϕnm|)) for the localized state. Left panels: strong
localization λ=−0.978 and E =−4.05. Right panels: weak
localization λ=−0.779 and E =−4.01. The s-wave symmetry
visible in the far field is a signature of entanglement, as
a product wave function φnφm would only allow fourfold
symmetry. Because of the (near) cylindrical symmetry of
the true wave function, the kinetic energy cost of bringing
additional amplitude to the site (0, 0) is significantly reduced
compared to that of the product wave function.

holds and the localized-state wave function is character-
ized by

ϕn,m =

√
Z

M

∑

k

1

E−Ek e
i 2πM (k1n+k2m), (10)

with the normalization factor Z =−1/[M2F ′(E)]. The
bound-state wave function ϕn,m is plotted in fig. 2 for
two classically forbidden cases. It is easy to see that this
bound and localized state is the ground state or the highest
energy state in the two-particle sector for attractive
(λ< 0) or repulsive (λ> 0) interactions, respectively.

Entanglement. – A system of N particles is entangled
if the multi-particle wave function φn1,n2,...,nN cannot be
expressed as a product φ1n1φ

2
n2
. . . φNnN of single-particle

wave functions. If the state of the system can be expressed
by a product wave function, it is separable. The Hartree
method becomes exact when no entanglement is present.
Since the Hartree method is variational, it gives the best
separable approximation in the sense that the Hartree
energy will be the closest approximation to the true
eigenvalue of the multi-particle Hamiltonian that can be
obtained with a separable wave function.
Let us discuss the two-particle problem. If the two-

particle state were separable, due to the Bose symmetry,
it would be possible to write it in the form φnφm.
This is inconsistent with the result that in the far field,
where the underlying lattice structure becomes less im-
portant, we observe cylindrical (s-wave) symmetry as seen
in fig. 2. A separable product approximation, on the
contrary, is inconsistent with the s-wave symmetry and
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Fig. 3: Difference ϕn,m−ψ(loc)n ψ
(loc)
m between the exact two-

particle wave function and the separable (Hartree) approxima-
tion of eqs. (4) and (10), respectively, at λ=−1.26.
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Fig. 4: Entanglement in the two-particle wave function ϕn,m
as a function of the energy E(2). Above the classical threshold
λ>−1 or E(2) >−4.05753 (shown as a dotted line) entangle-
ment is essential for localization. Shown are the von Neumann
entropy S, the condensate depletion (geometric measure)
1−n0, and the entanglement measure V as defined in eq. (11).

is characterised by ridge-like structures along the n= 0
and m= 0 co-ordinate axes. These structures are clearly
seen in the difference between the exact and the Hartree
two-particle wave functions shown in fig. 3.
In order to quantify the entanglement of the two

particles in the bound state (10) we compute various
measures of entanglement, as shown in fig. 4. First we
used the von Neumann entropy S =Tr(ρ ln ρ) [20]. Here
ρ is the single-particle density matrix (SPDM) with

elements ρi,j = F
−1〈Ψ(2)|a†jai|Ψ(2)〉, normalized with F =∑

i〈Ψ(2)|a†iai|Ψ(2)〉 to have Trρ= 1. Another measure
derived from the SPDM is the condensate depletion 1−n0
(also coined geometric measure of entanglement [25]).
Here, n0 is the largest eigenvalue of ρ and measures the
fraction of particles in a Bose-condensed state. Because

ρ describes a pure state, 1−n0 measures quantum deple-
tion, which, as we argue here, characterizes quantum
entanglement. This would not be the case in the presence
of incoherent, e.g. thermal, excitations.
A third measure, V , that is amenable to analytic calcu-

lations is also shown in fig. 4. It uses projected orbitals
defined as gn =G

−1∑
m ϕm,n, where G=

∑
m,n ϕm,n.

Since we expect for separable states that ϕm,n is equal to
the product gngm, where gn =

∑
m ϕnm, the deviation

V =
∑

m,n

|ϕn,m− gngm|2 (11)

is a measure of entanglement. Calculating V from eq. (10)
analytically we find

V →−7+ 17
4
π− 8 arctan 1≈ 0.06858 (12)

in the limit λ→ 0, in excellent agreement with the numeri-
cal result shown in fig. 4. As this figure shows, the different
entanglement measures provide a similar picture, although
they are not, in general, monotonic functions of each
other. In particular we note that the entanglement quickly
reaches its maximum value near the classical threshold. It
remains finite as the two particles become infinitely weakly
bound at λ→ 0.
Three or more particles. – We now show that

bound states with any number of atoms larger than two
exist in the quantum model (1) for any value of the
coupling constant λ �= 0 as well. Without loss of generality
we assume λ< 0. We have already found a two-body
bound state. It will suffice to show that any bound
p-particle ground state |ψ〉 binds another particle for any
p� 2. For this we have to find a (p+1)-particle wave
function |φ〉 with 〈φ|H|φ〉<E(p)− 2, where E(p) is the
energy eigenvalue of |ψ〉 and the minimum energy of a free
particle is −2. We use the ansatz |φ〉= α∑n x−|n|a†n|ψ〉,
which is normalizable if x> 1. We choose α> 0 as a
normalization constant to ensure 〈φ|φ〉= 1. We find
that 〈φ|H|φ〉�E(p)+F (x), where F (x) = (1+2λc)x2−
1−x−x−1+(x−x−1)p and c= 〈φ|a†0a0|φ〉> 0. Since
F (1) =−2+2λc <−2 it follows from continuity that there
is an x> 1 such that 〈φ|H|φ〉�E(p)+F (x)<E(p)− 2 as
required. This concludes the proof that bound states with
any particle number exist in the quantum problem.
We further remark that having found an N -particle

bound state that persists below the classical threshold
λ< λthresh = 1/(N − 1), we automatically know that
entanglement plays an essential role in its binding. This
is because the best separable wave function is in fact the
Hartree approximation, which does not bind there.

Translationally invariant systems. – In interact-
ing lattice problems with translational invariance the
quantum eigenstates are delocalized due to fundamental
properties of the quantum theory. However, the exis-
tence of lattice solitons in the corresponding classical
theory indicates the existence of quantum states with
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local second-order correlation known as quantum lattice
solitons, which can be interpreted as bound states of
quantum particles [9,11,12]. Both lattice solitons and
quantum lattice solitons are characterised by frequencies
and energies, respectively, outside of the bands of delocal-
ized solutions in the non-interacting system. A framework
for detailed comparison between the thresholds predicted
by classical and quantum theory is, again, enabled by
establishing the classical theory as a Hartree approxima-
tion to the quantum problem. In the classical theory, there
is no threshold in a one-dimensional lattice with a cubic
non-linearity (corresponding to two-particle interactions)
but there are thresholds for higher dimensions [8]. The
variational properties of the Hartree approximation guar-
antee that the existence of lattice solitons in the classical
theory implies the existence of quantum lattice solitons
but not vice versa. If quantum solitons exist below a
classical threshold in these systems we thus know that
entanglement between quantum particles plays a vital role.
However, we also expect entanglement to be relevant for
delocalised quantum soliton states above the thresholds
(i.e. for stronger interactions). It is known that thresh-
olds for quantum solitons exist in dimensions higher than
one [26].
Extending the current model with spatially localized

interactions into more than one dimensions, there will
generally be thresholds for localization in both the quan-
tum and the classical models [27]. However, these thresh-
olds will generally differ. The detailed study of such
systems lies beyond the scope of this letter and presents
an interesting opportunity for future work.

Conclusion. – We have shown that localized states of
a few atoms in an optical lattice with spatially confined
s-wave interaction persist below the classical threshold.
Moreover, wave function entanglement plays a crucial role
in that localization. A one-dimensional optical lattice with
spatially inhomogeneous interactions can be engineered
with presently available techniques using magnetic or opti-
cally induced Feshbach resonances [6]. Increasing the size
of the spatial interaction domain will decrease the classical
threshold, but it will stay finite. Thus, quantum localiza-
tion by entanglement is robust and will disappear only in
the limit of an infinite interaction domain, where the clas-
sical model is known to have zero thresholds for localized
states [8]. In an experiment where interactions are tuned
below the classical threshold the observation of localized
modes will indicate the vital role of entanglement. This
entanglement between atoms is distillable [20] and could
possibly be measured with entanglement witnesses or by
reconstruction of the single-particle density matrix from
position and momentum-space measurements. Beyond the
currently studied model we expect that quantum entangle-
ment favors localization in other quantum lattice or quan-
tum field theories as well.
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