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First-order static excitation potential: Scheme for excitation energies and transition moments
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We present an approximation scheme for the calculation of the principal excitation energies and transition
moments of finite many-body systems. The scheme is derived from a first-order approximation to the self-
energy of a recently proposed extended particle-hole Green’s function. A Hermitian eigenvalue problem is
encountered of the same size as the well-known random phase approxiiR@ian We find that it yields a
size consistent description of the excitation properties and removes an inconsistent treatment of the ground-
state correlation by the RPA. By presenting a Hermitian eigenvalue problem the new scheme avoids the
instabilities of the RPA and should be well suited for large-scale numerical calculations. These and additional
properties of the new approximation scheme are illuminated by a very simple exactly solvable model.
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PACS numbsg(s): 31.50+w, 32.70.Cs, 33.70.Ca, 21.6n

INTRODUCTION matrix of the particle-hole part. In a quantum chemical lan-
guage the TDA may be understood as treating the excited
Many-body Green’s function theory has provided severabtates on the single-excitation configuration interac(®al)
standard approximation schemes for the calculation of excitevel in comparison to an uncorrelated ground state. The al-
tation properties in atoms, molecules, and atomic nuclei. Segebraic diagrammatic constructiofhDC) approach(2,4]
ting out from a convenient single-particle description like therepresents a family of systematic higher-order approximation
Hartree-Fock approximation, these schemes usually lead tosthemes to the particle-hole part.
matrix eigenvalue problem. This supplies approximations for Another group of approximations results from including
the excitation energies and transition operator matrix elethe second part of the polarization propagalfd}fr,s,(w).
ments of the system. The starting point is usually the well-This part is called the hole-particle part because its zeroth
known polarization propagatofl], a fundamental two- order vanishes unlessandr’ are hole indices and ands’
particle Green’s function of nonrelativistic many-body are particle indices. In contrast to the particle-hole part its
theory. It is given by a sum of two terms that are related bypoles appear at the negative excitation energies. The funda-

symmetry(see, e.g., Ref2]), mental first-order approximation scheme, which treats both
oh hp parts of the polarization propagator on an equal footing, is
Hisrrs(0) =g g (o) I g (o). (D the so-called random phase approximat{&rA) [5,6,1,3.

Among the many different ways of deriving this approxima-

The so-called particle-hole pdf[f;r,s,(w) already contains tion we want to focus on the role of the RPA as the first-
all the physically relevant information exhibiting single poles order approximation to the inverse matrix of the polarization
in the energy variables at the exact excitation energies of propagator(1). Naturally this matrix now comprises the set
the system. Its name originates in the single-particle picturef particle-hole as well as hole-particle configurations and
that is usually taken as the zeroth order in a perturbatiotherefore has twice the dimension of the TDA matrix.
theoretical treatment. Zeroth-order contributiong®® only ~ Among the higher-order schemes that treat both parts of the
arise if the indices andr’ are particle indices anslands’ polarization propagator we want to mention the second-order
hole indices. We speak of a particle index if it refers to apolarization propagator approximatidS8OPPA [7—9] and
virtual single-particle state, i.e., a state that is not occupied ithe equation-of-motiotEOM) method[6,10].
a Slater determinant ground state whereas a hole index refers In the configuration interaction picture the RPA may be
to an occupied single-particle state. The particle-hole parseen to include ground-state correlation in addition to the
thus primarily describes excitations which, in a single-correlation of the excited states already accounted for in the
particle picture, may be understood as lifting one fermionTDA [8,11]. The RPA does so, however, in a nonvariational
from an occupied orbital to a virtual one. In a correlatedmanner and thus it is not obvious that the RPA yields im-
system, however, there are no fully occupied or fully virtual proved results compared to the TDA. It has rather been ob-
single-particle states and thus the exact particle-hole paserved that in certain cases the RPA excitation energies are
contributes also for index pairs &) other than particle-hole worse than those of the TDA, also in systems where corre-
index pairs. lation of the ground state is of special importartfo exem-

The various approximation schemes may be classified bplary numerical comparisons see, e[d2,13). In fact, we
the order in which the correlation is taken into account. An-will see later that the influence of ground-state correlation
other criterion for classification is which parts of the polar- onto the RPA excitation energies has to be regarded as in-
ization propagator are included. consistent with Rayleigh-Schdinger perturbation theory

A simple first-order approximation scheme basedBl  (see also Ref[2]). We will further study a simple model
is the so-called Tamm-Dancoff approximati6fDA) [1,3]. system for which the RPA gives much poorer results than the
It can be seen as the first-order approximation to the invers€DA. For this example an approximation method called
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first-order static excitation potentidFOSERB, yields the ex-  function. Calculating these is equivalent to solving the eigen-
act solution while posing a matrix eigenvalue problem of thevalue problem related to a generalized excitation energy op-
same size as the RPA. Also, a perturbation theoretical analyerator H, which lives in an extended Hilbert spacé
sis shows that FOSEP consistently includes ground-state coffhroughout this paper we assume a discrete eigenvalue spec-
relation. trum for the relevant Hamiltonians since we are interested in
The FOSEP method is a first-order approximation scheménite basis set approximations. The generalization to con-
that is derived from an extended particle-hole Green’s functinuous spectra, however, poses no particular problem.
tion [14] where additionally to the particle-hole and the hole- A basis of the extended Hilbert spa¥és given by the set
particle parts other propagator terms are present: The polaof states{|Q,)}, which are chosen “orthonormal” with re-
ization propagator has been augmented by combinations &pect to an indefinite metria:
single-particle propagators that give rise to additional zeroth-
order contributions in the particle-particle and hole-hole in- (QulQy==%46;. (2
dex spaces. The introduced terms are chosen such that the
extended Green’s function now satisfies a Dyson equatiors model space is spanned within the full space by a subset of
which in turn defines a well-behavegarticle-hol¢ self-  basis stateg|Y,s)}. This model space is supposed to allow
energy in analogy to the fundamental single-particle Green'éhe description of those excitations that are predominantly of
function[1,15,16. Earlier we have applied the general pro- particle-hole type. Direct reference to “occupied” and “vir-
cedure to the particle-particle propagator, another welltual” single-particle states is avoided by allowing the indices
known two-particle Green’s function. We could show thatr ands to range over the full set of single-particle indices
the self-energy of a suitably chosen extended two-particl€ach. The statepy,) are chosen to includéground-state
Green’s function serves as an optical potential for elasti€orrelation being “correlated excited states” in the sense of
scattering of two-particle projectilgd7]. The particle-hole Refs.[18,19. On the other hand, they are constructed mani-
self-energy, in turn, may be understood as a sort of “opticafestly “orthonormal,” i.e., satisfying
potential for particle-hole excitations,” some general aspects .
of which are discussed in RefL4]. (YeslalYrrsr) =611 85 3
This paper is organised as follows: After a brief review of ) . ,
the relevant construction principles of the extended particle€*actly and in each order of perturbation theory. Itis a spe-
hole Green’s functions we will define the FOSEP approxi-c'aI property that all states in the primary S“bﬁmrs)} have
mation and discuss the structure of the corresponding matriROSitive norm. The construction of states with the described
eigenvalue problem in Sec. I. In the next section the properProperties presents the crucial step in developing the theory
ties of the FOSEP approximation for excitation energies an®f €xténded particle-hole Green’s functions. Explicit expres-
transition moments are investigated on a formal level. Firsf!0NS for the particular choice used in this paper can be found
the similarity to the RPA equations is pointed out in order to'" Ref.[14] together with a thorough discussion of the con-
compare the properties of the two approximatiqsA ). struction prlnC|pIes an.d the remaining freedom.of choice.
Both schemes share the fundamental properties of size con- The basig{|Q)} defines a matrix representatién of the
sistency(ll B) and the invariance under unitary transforma-generalized excitation energy operatér The subdivision of
tions of the occupied or virtual Hartree-Fock orbitélisC).  the basis into the basis of the model sp4fé,c)} and the
The differences between the two approximations will be-complementary part superposes a block structure onto this
come apparent in Sec. Il D when we will perform a pertur-matrix:
bation theoretical analysis of the excitation energies up to
second order. This analysis shows that the FOSEP approxi- _ | Zaa Han
mation includes part of the ground-state correlation in a con- B Her (4)
sistent way while the RPA proves inconsistent with pertur- )
bation theory in this respect. It follows an analysis of theThe indexa refers to the model space abdto its comple-
approximation for transition moments that is found to bement. The primary block{,, of this matrix is given by
consistent in first order. The last paragraph of Sec. Il deals A
with the equivalence of length and velocity form of the tran- [Haalrsrrs =(Yrs| 0 H| Y rsr). (5)
sition moments of the dipole operator, which are important
for the so-called oscillator strengths. In Sec. Il the FOSEFEXxplicit expressions for this matrix may be found in the Ap-
method is compared with the RPA and TDA in application topendix and are derived in Rdf14] where, also, a physical
a simple exactly solvable model system. interpretation as a static particle-hole scattering potential in
the case of Coulomb interacting particles is given. In the
following we will investigate the first-order approximation to
I. THE FOSEP APPROXIMATION this matrix within the framework of many-body perturbation

The extended particle-hole Green’s function is one Spegheory. .
cies in a family of two-particle propagators that fulfil Dys- In- ord.er to apply pertur.bgnon theory the many-body
on’s equation. The general theory has been developed ifamiltonianH has to be split into two partsly andH; as
Refs.[14,17). Here we will only outline the main ideas that Usual. The choice of the one-particle operator
are relevant in the present context. The desired physical in-
forma_tion I_ike excitation energi_es and transition moments is |:|o=2 SiaiTai (6)
contained in the poles and residues of the extended Green's i
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as character.ized by t_he diagon_alizing si_ngle-particle basis[_s(oo)]g)rrsr:[Haa]g)rlsr:vrrlassr_05,35”,4_\/(3,[3(,]
{l¢i)} and single-particle energigls:;} defines the zeroth - : - ‘
order of perturbation theory. The residual interactidn X (nng—n,ng)(N, Ngy— Ny Ng/)
—5+V contains contributions of a one-particle operagor
and a two-body interactiol’: + 555,2k NNV — 5",; N Vsrkisig
12
l’}:iEJ UijaiTaj, (7) ( )

for a general Hamiltonian where we have introduced the no-
~ 1 - tation n,=1—n,. Expression(12) may be readily derived
VIE_E Vijkia; ajajay. (8)  from the general expression for the primary blok.,,
LIk which can be found in the Appendix. In the/NMa-Plesset
case(9), the first order simplifies even further. In particular,

__In particular, we are interested in the/Mwo-Plesset par- it is this approximation that we will refer to as first-order
titioning of the Hamiltonian where the zeroth-order Hamil- static excitation potentiaFOSER:

tonianH, is defined by the Hartree-Fock approximation. In
the case of a nondegenerate ground state the matrix elements FoSE _ _ _
vij of the one-particle part of the interaction are then given [S"™°"rs,rsr= Vs (NeNs=NeNg) (NN —NeM)).

by (13
HF_ Now the following Hermitian eigenvalue problem remains to
Vij = > MVikgik] - © be solved:
HereV g 1s11= Visrrs' = Vissrrr denotes the antisymmetrized + SFOSER Y — (X 14
matrix element of the two-body interaction amg is the (g+& IX=wX. (149
occupation number of the orbital,) in the zeroth-order
ground-state Slater determingdto). The (physica) eigenvaluesw provide approximations to the
~ The zeroth order of the primary blodK., from Eq.(5)  excitation energies of the system and the corresponding
yields the matrixe of zeroth-order excitation energies: eigenvectorsX may be used to calculate transition operator
matrix elements(transition momenis The transition mo-
[Haa]g)r,s,:[g]rsyr,s,:(Sr_ss)(s”,gss,_ (100 ments corresponding to the dipole operator define the so-

called oscillator strengths, which are of great importance for

. . o . hotoabsorption and emission proced§$dsThe FOSEP ap-
This reflects the fact that in our ansatz the first index in th roximation for transition operator matrix elements reads

pairrs has to be understood as marking the orhjpalsition 14]
into which a particle is created and the second index ag
marking the orbital where a particle is destroy@d a hole
createdl. - -
The main motivation for developing the theory of the ex- (Wo|T|W,)FOSER= Tiixs, (15
tended particle-hole Green’s function was that it fulfils a .
Dyson equation and therefore possesses a particle-hole self-
energyg(w)_[_14!1ﬂ. This se_lf—energy may be seen to result yhereTii are the matrix elements of tHene-particlg tran-
from a partitioning of the eigenvalue problem associated toSition operator:l' andX# are the components of the eigen-
the matrix i with respect to the primary blockla,. The vector associatéd to ar|1J excitation into the state)
energy independerftstatic” ) part of the self-energg(«) is @/

i ; . . ) Due to extensions included in the definition of the pri-
defined by the primary block minus its zeroth order: mary statedY,.), however, not all of the eigenvalues and

eigenvectors of Eq(14) correspond to “physical” excita-
(%) =Haa"g- (1D tions. More insight may be gained by looking at the particu-

lar block structure of this eigenvalue problem that is revealed
The significance of this part is to describe the the influenceavhen splitting the set of index pairs according to whether the
of correlation to particle-hole excitations that remains in theindices relate to occupiethole) or unoccupied(virtual or
high-energy limit, i.e., when the “target particles have noparticle orbitals. In zeroth order only the diagonal matgix
time to rearrange upon the influence of the particle-hole exis present and the distinction between “physical” and “un-
citation.” The lowest-order contributions to this matrix are physical” excitations is obvious, since the ground state is
of first order. The energy-dependéhtlynamic”) part of the  approximated by a Slater determinant. In this case excita-
self-energy S(w) — S() takes account of the remaining tions of a single particle are possible only from an occupied
blocks of the matrix/{ and starts in second order. into a virtual orbital. Thus only theh-ph block is “physi-

The first-order contributions to thatatig self-energy are cal.” In the first-order(FOSEP approximation the secular

given by matrix has the following structure:

uCn
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hh ph hp pp with the physicalph-ph block and thus introduces a correc-
hh/ ™ 0 0 0 tion to the Tamm-Dancoff excitation energies. Due to the
= . decoupling of thepp and hh blocks we are left with an
rosep. P[0 &PM+V W 0 eigenvalue problem comprising the blocks of the FOSEP
etS “hel o - _gPhiyE 0 matrix with ph andhp indices:
pp| 0 0 ghP MFOSEX = wx, (19
(16)

MFOSER= ¢ + SFOSER | hp blocks
The asterisk*) denotes complex conjugation for the matrix
elements and the tildé"§ denotes a simultaneous transposi- -
tion of the two index pairs that specify a matrix element, W —gPhp x|
which simply means a renumbering of the rows and columns h h -
of that matrix: This is the eigenvalue problem that has to be solved in the
FOSEP approximation scheme. In contrast to the RPA itis a
[Alis s =[Alsr sy - Hermitian eigenvalue problem always yielding real eigenval-
Y - ues. In fact, in most cases the mathiX °SEPis real symmet-
First of all we notice that the FOSEP self-eneig§{°SE”  ric.
does not contribute at all for pairs of orbitals that are both As long as the interaction remains weak enough, there is a
occupied bh) or both virtual @p) and only the zeroth-order clear distinction between “physical” eigenvalues of this ma-
matrix ¢ remains. Thus thénh-hh and pp-pp blocks de- trix and “unphysical” ones by the sign of these energies.
couple from the rest of the matrix and the eigenvalue probEven with stronger interaction the distinction may still be
lem (14) for these blocks becomes trivial, simply yielding Valid. This is understood easily when considering a model
the Hartree-Fock orbital energy differences. These blocks argystem where theh-ph block has dimension 1 and all ma-
obviously not correlated in the first-order treatment. We wantrix elements are real. The matri¢"°S5Fthen is two by two
to mention that this decoupling of tHeh-hh and pp-pp ~ and its eigenvalues are given by
blocks is special to the Kller-Plesset partitioning of the
Hamiltonian and to the particular choice of the extended + Ve W2V,
states|Y,s) considered in this paper. It does not appear for. . . .
other choices discussed in RET4]. The decoupling leads to Thus_ we get one positive eigenvalue and a negative one,
a considerable reduction of numerical effort and therefordovided that
justifies the present choice. Many of the properties discussed
in the present paper, however, generalize also to first-order

approximations based upon other choices for the primaryqe thaty is the contribution of the correlation introduced
extended statel¥ ). N _ . in the TDA and this condition now states that it has to be
The ph block of theg matrix ¢”" contains those energies gmajl enough compared to the zeroth-order excitation energy
that relgte to a simple .partllcle—hole excitation in a ZerOth'augmented by the additional interaction tewth When this
order picture. The contribution of condition is violated, or in general the numbers of positive
B and negative eigenvalues in a given symmetry are not the
[Vlohprn' =Vonihpg same, the eigenvectors may be necessary to distinguish be-
] ) ) tween physical and unphysical contributions. Still the
(h,h"occupied, p,p’ virtual orbitaly (17)  «physical” approximation may usually be defined by the
upper half of the eigenvalues.
in the ph-ph block describes the interaction of the uncorre-  |n the remaining sections of this paper we will discuss the
lated ground-state Slater determinant with a singly exciteeOSEP approximation as defined above. It presents the natu-
configuration. In fact, diagonalizing theh-ph block ¢™  ral first step in approximating the particle-hole self-energy
+V on its own results in the well-known TDAL]. The  §(w) and thus the matri#{. At this place we want to men-
couplingW to thehp-hp block can be understood as taking tion that other approximations, for example, result by aug-
into account ground-state correlation as will be explainednenting the primary set of statP¥). In particular, one can
later with the help of perturbation theoretical arguments. Agbtain the RPA straightforwardly via the formalism of ex-
similar coupling also appears in the RIPH. The relation of  tended Green's functions. This is achieved by additionally
our approach to the RPA will be discussed in detail below. jncluding a subset of the bas[$Q,)} consisting of states
Thehp-hp block by itself does not seem very physical in with negative norm that are degeneréite zeroth order to
character at all. Its zeroth-order excitation energies are negéhe hole-particle fraction of the sétY,s)} [14]. This aug-
tive and result from creating a hole in a virtual orbital and amented set of states defines an extension of the primary
particle in an occupied orbital. Nevertheless, tp-hp  plock ,, in the matrix. In first order this extended matrix

etV W

(20

2
V2< gPh W2,

block couples through the matrix can be decoupled with the help of a unitary transformation
into the RPA eigenvalue problem and additional unphysical
[Wlphhpr == Vppihhr blocks. Thus the RPA is included in the general theory as a

specific approximation. Note, however, that FOSEP presents
(h,h" occupied, p,p’ virtual orbitaly (18) the canonical first-order approximation in our ansatz since it
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is based upon the primary set of sta{¢¥,s)} that defines MRPA= ¢
the Green’s function and self-energy matrices. B )

n3

FOSE
+§ |Tph and hp blocks

ph

nw
<

W+ gPh

In this chapter we will discuss some general properties of i the same nomenclature as in E¢s7) and (18), the
the FOSEP approximation. In order to elucidate the relatiorpp o eigenvalue problem may be rewritten to

to the well-known first-order approximation schemes RPA

and TDA we start with briefly reformulating the RPA in our MRPA = wmx’ (26)
notation; we then consider two fundamental invariances B )

FOSEP shares with RPA and TDA, namely, size consistencwith x"=mx. Comparing the RPA26,25 with the FOSEP
and invariance with respect to unitary transformations of theeigenvalue problenl9,20 we see that both have the same
single-particle basis. In order to show the differences besize and start from the same input data while the difference
tween the three schemes we will carry out a perturbatioties in some minus signs. Before analysing the differences
theoretical analysis for the excitation energies as well as fofurther we want to discuss two fundamental properties that
the transition moments. Finally, the equivalence of the lengtlare shared by both schemes.

and velocity forms of the dipole operator transition moments

is discussed. B. Size consistency of FOSEP

The question of size consistency of a many-body method
is the question of whether the resulting approximations for

The RPA[1,3] for the calculation of excitation energies physical quantities scale correctly with the size of the system
and transition operator matrix elements in finite Fermi sys{22,23. The general question is difficult to answer and usu-
tems may be derived and understood in many different wayslly one has to resort to simple models or numerical calcu-
Traditionally the RPA is derived by the infinite summation lations. Nevertheless, this concept becomes very important
of a certain type of diagrams in the Feynman-Dyson perturfor applications to large or extended systems. In the context
bation series of the polarization propagdts}. Equivalently  of finite systems, especially molecules, the so-called separate
it can be understood as a first-order approximation to théragment model provides a useful test of correct scaling be-
integral kernel of the Bethe-Salpeter equat[@0] or as a havior. We consider a many-body system consisting of two
specific first-order approximation in the equation of motionor more separaténoninteracting subsystemgfragments.
of the polarization propagatd6,8]. Now we are going to Size consistency of excitation energies and transition mo-
present the RPA equations in a form suitable for comparisoments then means that an excitation that is local to one of the

(25

*

+ n
1< E

Il. PROPERTIES OF THE FOSEP APPROXIMATION

A. Relation to the RPA

with FOSEP. subsystems is approximated with the same result regardless
Based upon a Hartree-Fock zeroth order the RPA is deef whether the approximation scheme is applied to the full
fined by the following eigenvalue problefg21]: system or only to the fragment. A sufficient but not neces-
sary condition for this property is that the secular equations

(em+ R)x=wmx. (21)  of the approximation scheme give rise to independent sets of

equations corresponding to local excitations on the indi-
vidual subsystems. Thig priori decoupling of independent,
local equations is known as the separability prop&2gj.

The matrixg is defined as in Eq(10). The RPA kerneR
consists of the matrix elemen® s =V s[5 and the

metrical matrixm is given by The separability of FOSEP and RPA is proven by the
_ T nT following arguments: In the model of separating fragments
[Mrs,r7sr =0 O (NeNs=NAN). @2 the Hamiltonian of the full system is given by the sum of the
Note that in block matrix notatiom can be written as Hamiltonians of the subsystems. This implies that the
h (Hartree-Fock single-particle stateg, may be chosen local
1 0 to either fragment and that the matrix elements of the two-
n= (6 __1>- (23)  body interactiorV;;, vanish unless all indiceigkl relate to

states belonging to the same subsystem. From the definition

All of these matrices are indexed by pairs of single-particle®f the FOSEP matrix13), (20) and the RPA matrix25) it
indices that are required to be either particle-hole or holetherefore becomes clear that both methods have the separa-

particle index pairs. Thus the RPA eigenvalue problem hagllity property and thus can be regarded as size consistent.
the same size as the FOSEP qfi6). The essential differ- 1 N€ same arguments apply to the TDA to which the FOSEP
ence is the appearance of the indefinite matrim the RPA ~ @nd RPA reduce in the case of vanishing couplifgas

case which renders the RPA problem a non-Hermitian eigenexplained in Sec. I. For nonlocal excitations the excitation
value problem. As a consequence the RPA may become u®"€T9y is simply given by the difference of the single-

stable and lead to complex eigenval(igs The RPA kernel particle (Hartree-Fock energies for all three schemes. This
R is related to the FOSEP self-energ§PSEPin the follow- ~ Means that the level of approximation is that of Koopman’s
i=ng way: = theorem, which provides a consistent first-order description.

We want to mention that the separability property is by no
Rm. (24) means a matter of course for more accurate many-body
o methods such as, for example, the general configuration in-
Introducing the matrix teraction(Cl) method[25].

SFOSER

3
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C. Unitary transformations of single-particle orbitals and not on the particular choice of the single-particle basis.

In order to separate the influence of finite truncations of the Special case of a system of particles which interact

the underlying single-particle basis from the systematic defipnIy V‘.’ith a one-particle potential, the primary blogk,, is '
ying singie-p y ven independent of the ground state. In this case the first

fr:inacpl)i)src());ifrl]gtl;/oenniSﬁ)r?\:Z;(igrr]l?S\(/)itnhsrzzzr;; Lglsrégﬁg:::r;tfiuigrder _already_prowd_es the_ exact solution for the excitation
. . . . . . ) energies and is invariant with respect to any unitary transfor-
single-particle basis. A global invariance is sel_f-ewdent_onlymations of the single-particle basis. This property is ex-
for “exact” me_thods suc_h as _fuII Cl. Systematlc_truncatlpns plained in more detail in Ref14].
of the CI matrix employing single, double, or triple excita-
thns on a given reference C.O nfiguration a.re at Iea;t mvanqntD_ Perturbation theoretical analysis of the excitation energies
with respect to transformations of the single-particle basis
that do not mix occupied and virtual orbitals. Such an invari- In order to analyze the differences between the FOSEP
ance usually does not apply for perturbative propagatofPProximation, the RPA, and the TDA we will now perform
methods. The FOSEP method as well as the RPA and th@ Perturbation theoretical analysis of the excitation energies
TDA, however, share this invariance with the CI whereas"P to. secor]q_ order and compare with st.ralghtforward
higher-order methods usually do not. For the second-orddr@Y€igh-Schrdinger perturbation theory following Re2].
polarization propagator approximati¢8OPPA method the Usually the Raylelgh-thdmger Seres |tse_lf IS not a reI|-_ .
influences of rotations of the orbital set have been investif’lble method for calculgtmg energies Of. eXC'Fed staies bt 'F IS
. very helpful for analyzing and comparing different approxi-
gated numerically26]. mation schemes
f A .phyS|caI motivation for altering the single-particle We assume that the Rayleigh-Sitirger series starting
unctions may be drawn from the fact that the Hartree—Fockfrom the sinalv excited Slater determinant
virtual orbitals describe additional test particles in a mean gy
field and therefore constitute rather diffuse functions while |¢’aﬁ>:aT | Do) (27)
the main effects of correlation show up at short range due to “
ineffective screening. Thus one can hope to achieve a bettebnverges towards the excited sthie, 5). Note that herex
description of the influence of correlation with more local- has to be a particle index angla hole index.
ized virtual orbitals than the Hartree-Fock ones. An expression for the second-order excitation energy can
Within a perturbation theoretical approach a unitary transhe gained by subtracting the expressions for the ground-state
formation within the set of virtual single-particle states CanenergyEO from the excited-state ener@aﬁ_ Up to second
be realized by adding éHermitian single-particle potential order the ground-state energy is given by the familiar expres-
to Hy of Eq. (6) that takes effect only on the virtual orbitals sion
and subtracting it again fromd; of Eq. (7). The new single- (2p-2h)
particle basis is then defined as the diagonalizing basis for Eo(2)=Eo(1)+ U™, (28)
the new zeroth-order Hamiltonian. Obviously the new basis ~ ) _
is connected to the original one by a unitary transformatiotVhereEq(1)=(®q|H|®y) is the first-order ground-state en-
that leaves invariant the occupied single-particle states an@f9y- The term
also does not affect the Slater determingh) preserving 2
the distinction between occupied and virtual single-particle y@e2h) — _ Vgl
states. From the definitions of the matrid¢d®,13 it can be 0 i<] eitej—ex—eg
seen that such a transformation of the single-particle basis k<l
also results in a unitary transformation of the secular matrixjenotes the second-order contribution to the ground-state
in Eq. (14), which preserves its block structu(e6). There-  correlation. The given approximation is known as the
fore also the FOSEP eigenvalue probletd,20 transforms  mgller-Plesset(MP) 2 approximation and extensively used
without changing its eigenvalues. This argumentation can bgy, quantum chemistry. In the configuration interaction lan-
transferred analogously to the closely related RPA and TDA uage the second-order tem2p—2h) may be interpreted to

Summarizing, we have seen that the FOSEP approximatioBesent interactions of the ground state Slater determinant
as well as the RPA and TDA are invariant under unltary|q)o> with two particle-two hole configurations

transformations within the set of virtual single-particle states. The second-order energy of the excited state is also evalu-
It is easily seen that this property generalizes to unitary tranz

) . . . X ted straightforwardly and can be found in REZ]. The
formations of the orbital basis that do not mix occupied and, .itation energy up to second order then reads
virtual orbitals.

ninngn (29)

In a much more general sense, however, the maifjx AE,4(2)=E 4(2)—Eq(2)
. .= af af 0
of Eq. (5) that forms the primary block of the matrix repre- ) A
sentation’H of the excitation energy operatét is invariant =AE (1) +URV+UE 4R, 5, (30

under (unrestrictedg unitary transformations of the single-

particle space. Since the only unknown quantityHp, [see =~ WhereAE, (1)=&, &5~ Vagap is the first-order excita-
also Eq.(A1) in the Appendi} is the exact ground state of tion energy. The term&) ;" and UZ£"*” denote second-
the system, the invariance properties of an approximation torder contributions to the excited state’s energy arising from
Haa follow the chosen approximation for the ground state. Inthe interaction of the configuratidmbaﬁ) with (othen p-h
other words: The eigenvalues of the matrix of E41) de- and 2p-2h configurations, respectively, and can be found in
pendonly on the chosen approximation for the ground stateRef.[2]. The partR,,z is the remainder of a partial cancella-
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tion of the second-order ground-state correlation ternthe sign is consistent with the Rayleigh-Satirger expan-
U{P-2M of Eq. (29) with a contribution to the correlation of sion. This term comes in through the coupling of fiewith

the excited state. It can be written as the sum of three term#he hp block in the FOSEP matris "°SEP of Eq. (19) and
the RPA matrixMRPA of Eq. (25), respectively. We recall

Raog= Ra5+ Raﬁ+ Raﬁ, (3)  that the only difference between the FOSEP and the RPA
equations are minus signs in the-hp blocks of the secular
where matrices and the RPA metric. These carry through to the
) second-order expressions and prove inconsistent with
Rl — Vit nen Rayleigh-Schrdinger perturbation theory in the RPA case.
BT e tej—e—g < It is interesting to note that each of the three part®gf
Kies of Eq.(32) is positive. Thus the RPA always lowers the TDA
excitation energies in second order whereas the FOSEP ap-
) AT — proximation increases the energies in accordance with the
Rap= A ete—egs MM (32 positive sign of the full correctioR, ;. Taking into account
.i.’i'j TR that the TDA approximates the ground state by the varia-
A tional Hartree-Fock method, it is sensible to expect an in-
Va2 crease in the excitation energies when ground-state correla-
Ri,e &ﬁjnll tion is additionally taken into account. Therefore we may
1 EatEjTERTE conclude that the FOSEP scheme includes ground-state cor-

o S relation in a consistent way in contrast to the RPA, which
These contributions are left over froo{?2", correspond- does not.

ing to the special cases wherre-a or k=2 in the sum of Concerning the terr) (2?2 in the full second-order ex-
Eq. (29). The rest ofU§?*?" is cancelled by contributions pression(30), which is missing in all three schemes, we re-
from the excited state. mark that it does not carry a definite sigas can be seen

We are now in a position to compare with the second-from Eq. (680 of Ref.[2]}. It may, however, lower the en-
order excitation energies from the TDA, the RPA, and theergy of the excited state and thus can possibly overcompen-
FOSEP scheme. The approximations for the excitation enesate for the influence of the ground-state correlation. In this

gies in these schemes are found by solving the eigenvalugay the RPA result may be supported by accidental numeri-
problem related to the corresponding matrix. Basic matrixcal compensation.

perturbation expansion leads to the second-order approxima-

tion for the eigenvalue. We find the following: E. Perturbation theoretical analysis of the transition moments

ETDA(Z) AE (1) +U; (p-h) (33 We now will show that transition operator matrix ele- _
ments between the ground state and an excited state can, in
ERP’*(Z) AE,5(1)+U¢ p h_ Riﬁ! (34) ~ contrast to TDA, be approximated by FOSEP consistently in

first order. We consider the transition moment

FOSEP (p-h) 3 “
AE, 37 (2)=AE 4(1)+ U 5"+ R34 (35 To= (Vo[ TIW ) (36)
All three approximation schemes are consistent in first orde
with the Rayleigh-Schidinger expressior(30). Therefore
they are correctly referred to as first-order schemes. Th
zeroth- and first-order contributionSE,z(1) originate in
the diagonal matrix elements of theh-ph block (TDA — - (1) W7
block) of the matricesM "OSEPand MRPA of Egs. (19),(25) Tap(L)= (Pl TP o) T (Lol TIW o) + (VoI TP ).
whereas the second-order terms come in by the diagonaliza-
tion procedure. Neither of the three schemes reproduce tHexplicit expressions for these terms derive from straightfor-
second-order expressiofi30) completely. This is only ward Rayleigh-Schuinger perturbation theory and may be
achieved by more accurate and more costly schemes such fasind in Ref.[2].
the second-order algebraic diagrammatic construction In an analogous fashion to the preceding paragraph the
[ADC(2)] or SOPPA. above expression may be compared to the result of matrix

The termug’};h) describes part of the second-order corre-perturbation analysis of the TDA, RPA, and FOSEP approxi-
lation of the excited state as can be seen from Ef.and  mations for the transition moments. It is easily seen that the
(28),(29). It is the only second-order contribution to the TDA FOSEP eigenvalue problefi4), (19) together with the ap-
excitation energy and originates in the off-diagonal part ofproximation for the transition moments of E35) leads to a
the TDA matrix, which also constitutes thEh-ph block of ~ consistent first-order approximation of the transition mo-
the FOSEP matritM™©SE” In the FOSEP and the RPA ex- ments. For the TDA, the RPA, and the first- and second-
pressions the additional terﬁa3 is present, which has al- order ADC scheme the perturbation analysis has been carried
ready been identified as part of the ground-state correlatiout in Ref.[2]. It has been found that the TDA expression is
Comparing with the second-order perturbation expansmmcomplete in first order because the te{rh(l)|T|<Daﬁ> is
(30), however, we notice that it appears with the wrong signmissing. This term is a consequence of first-order ground-
in the RPA excitation energy in contrast to FOSEP, wherestate correlation, which is neglected in the TDA. It is de-

bf the (one-particle transition operator:l' for the particle-
hole excited statg¥ , 5) that was introduced in the last para-
Sraph. Up to first order the perturbation expansion yields
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scribed correctly in the RPA, which yields consistent transi-of equivalence through first order is another clue for the con-
tion moments through first order. This may be seen to justifysistency of the FOSEP approximation. The second-order er-
the common statement that the RPA, in contrast to the TDAror between length and velocity forms provides a genuine
considers ground-state correlation. We want to mention thatest for the validity of the approximation. Depending on the
the transition moments are also described consistentlparticular aims of an approximate calculation this may seem
through first order in the ADQ), an approximation that is more favorable than having anpriori equivalence as in the
equivalent to the TDA with respect to the excitation energieRRPA, which hides the actual error with respect to the exact
but differs for the transition momen{g]. value of the transition moments.

F. Equivalence of the length and velocity forms lll. APPLICATION TO A SIMPLE MODEL

of the dipole operator transition moments In this section we compare the FOSEP approximation

Now we will focus on the transition moments of the di- with the RPA, the TDA, and the exact solution for the exci-
pole operator as a particular choice for the transition operatation energies of a very simple model system. This model is
tor. These transition moments are related to the so-calledommonly referred to as the Hubbard model for the hydro-
oscillator strengths and present important parameters charagen molecule KH[30]. In the model, all excitation energies
terizing the interaction of the many-body system with radia-can be calculated by analytic expressions in dependence of
tion. There is a hierarchy of equivalent representations of théwo parameters which mimic the effects of Coulomb inter-
exact dipole operator transition moments, starting with theaction.
so-called length and velocity forms. Without loss of gener-
ality we consider only the componenZ of the dipole op- A. Definition of the model and exact solution

erator. The identity The Hubbard model for the diatomic Hydrogen molecule

5 - i £ represents each atomic si® and R’) by a single orbital
(Bum B (Wl Z[Wo)= ~I(W, [P Wo) 39 elgctronic level denoted tj;ﬁ)andh?’;, r}éspecti?/ely. Each
expresses the equivalence between the length and the veldgvel can be occupied by up to two electrons with opposite
ity forms of the dipole operator transition moments definedspin. The single-particle part of the Hamiltonircontains a
by the left- and the right-hand sides of this equation, respecdiagonal term
tively. The z component of the momentum operatey is
related to the dipole operator bif,Z]= —iP, provided that
the Hamiltonian contains only local potentials such as, €.g\which yields an energy for each electron. The off-diagonal
for Coulomb interacting electrons in atoms or mole-teym describes attraction by the neighboring nucleus and rep-
cules. Equation (38) then follows from the identity resents an amplitude for tunnelling or hopping of an electron

(RIh[Ry=(R'|n[R")=¢, (39)

(BE.— Eo)(‘I’M|2|‘I’o>:<‘I’M|[|:|12]|‘I’o>- from one site to another:
It is a very special property of the RPA to preserve this A R
equivalence exactly, provided the underlying Hartree-Fock (RIh|R)=(R’|h|R)y=—t (<0). (40)

single-particle basis is complef27]. In fact the RPA eigen-

value problem may be derived setting out from a ClI repre-/Additionally a two-particle interaction term is present that
sentation of the ground- and excited-state wave functionyields a positive energy whenever one level is occupied by
and requiring certain “hypervirial relations,” which present two electrons. This term represents the intra-atomic Cou-
a slight generalization of the above-mentioned equivalencel®mb repulsion between two localized electrons. Note that all
[11]. Thus the exact fulfilment of these hypervirial relations interactions are independent of electron spin.

may be regarded as unique to the RPA while other approxi- We consider the neutral Hmolecule, i.e., an occupation
mation schemes show, at most, a perturbative equivalence. With two electrons. The solution of the Hartree-Fock equa-
order to make the perturbation expansion transparent, it ions yields the(moleculaj orbital functions

useful to introduce the functioA(\) as the difference be-
tween the right- and the left-hand side of EG8). It is a
function of the usual interaction strength parameten H,
=Hg+AH;. Owing to its nonlocal character, Hartree-Fock
does not preserve the length-velocity equivalence. Henceyhile the corresponding Hartree-Fock single-particle ener-
choosingH to be the Hartree-Fock operatar(\) in powers ~ gies reacsy,=E+t+3U. In the Hartree-Fock ground-state
of A does not vanish term by term; each order will in generaiSlater determinant®,)=[g7g]) the orbital|g) is doubly

give a nonvanishing contribution. The TDA approximatesOCCUpied. In order to make transparent the transition between
only the zeroth-order term af(\) correctly, giving an error the Hartree-Fock approximation and the correlated problem
in first order[i.e., O(\)]. The FOSEP approximate§(\)  Wwe introduce the additionalperturbatiopn parameter\
through the first order giving a second-order error. So does[0,1] by using the Hamiltonian

the RPA that additionally has the unique property of repro- ~ - -

ducing the zeraA(A\=1)=0. For completeness we mention Hy=Ho+AHy, (42)

that the first-order AD@28] approximateA(\) through the -

first order while the SOPP/29] as well as the second-order Where the Fock operatdt, and the interaction Hamiltonian
ADC [28] are consistent through the second order. The resull, are defined as in Sec. I. The matrix elements of the two-

1 1
@)= (RIFIRY). )= (R-[R), @)
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body interactionV; that defineH, are given by the trans- TDA N
formation (41) into the atomic orbital picture. AEr=2t-5 U (47)
There are six independent solutions for the two-electron

eigenstates of the system. According to the possible combeoincides with the first order of Rayleigh-Scdioger per-
nations of the electrons’ spins three states of singlet symmeurbation theory.
try |Wo.) and|S)) and a degenerate tripléT ;) are The FOSEP matridV "°P as well as the RPA matrix,
found. The triplet and the singlé®,) states are uncorrelated however, have dimension 2 because of the coupling with the
and have one electron in @ and one in ag orbital. The corresponding hole-particle configuration. The FOSEP ma-
singlet statd¥';) corresponds to af®2h excitation. It will trix for the triplet excitation is given by
no longer be considered because it lies outside of the range
of RPA, TDA, and FOSEP. The wave function of the singlet 5 A A

e i t—=U U
ground state is given by 2 2

M_T_OSEP: \ \ ) (48)

|Wol=aylgTgl)+Bylutul), (43 5U —2t—§U

where
Its eigenvalues are given by
4t+ V16t +\2U? \ X
a\= ) FOSERp or u_ 2 2
2()2 2 AE =—-U=x\/4t°+ — U~ 49
VN2UZ+ (4t + 187+ \202) 44 T 5 2 (49
ﬁle—af. As discussed in Sec. | we obtain physical and unphysical

. o eigenvalues of which the latter do not carry any physically
The dependence on the perturbation parameterdicates rejevant information. The distinction between the physical

the influence of correla_ltion, which only appears between thgq the unphysical eigenvalue is clear in the present case
singlet Slater determmapts af sym_metry |ngl> and because&E_FrOSER’p) is always non-negative WhilAE_lT_OSER’u)
[uTul). In order to simplify the notation, we will drop the s onnositive for all choices of the parameters. Note that the

subscript\ in the following. Note that the uncorrelateq Casephysical eigenvalue yields the exact excitation energy
corresponds ta. =0 wherea=1 andB8=0. Therefore it is AEFOSERD _ A

clear thaj W) is connected to the Hartree-Fock ground state

£
. The close relation of the RPA eigenvalue problem to the
|Po)=|g1gl). The energy eigenvalues of the exact states ! genva e p

OSEP matrix was discussed in Sec. Il A. The solutions of

are given by the RPA equations for the triplet excitation are given by
A / A2 RPA(p or U _ —
Obviously the expression under the square root may become
Es =2&+U, (45) negative for certain choices of the parameters, in which case
v the RPA becomes unstable.
E;=26+U—\U. A plot of the solutions of the FOSEP, the RPA, and the

TDA equations as a function of the perturbation parameter

The excitation energieAE; are defined as usual by the dif- for @ particular choice of the Hubbard parametermndU
ference of the excited state’s enerBy to the ground-state ¢an be found in the upper part of Fig. 1. For this choice

energyE,. The energy related to the excitation into the trip- 'éPresenting strong interatomic Coulomb repulsion, the RPA
let, e.g., is thus given by becomes instable. As discussed in Sec. Il D in the framework

of a second-order analysis, the RPA lowers the TDA value

Y 2 whereas the FOSEP approximation yields a higher value for

AEr=Er—Eo=— Uty 42+ vy U2 (46)  the excitation energy; that is correct in the present case. We
have already mentioned that here only the ground $tge

Note that the expansion ofE; into a power series il is correlated wherea:'s th_e excited stéfe ;) _is not. This
yields the Rayleigh-Schiinger series of the excitation en- ground-state correlation is correctly taken into account by

ergies, which has been discussed in a general context in S¢8€ FOSEP approximation but not by the RPA. In the present
I D. simple model this goes even beyond second order as can be

seen from Eq(46).
For the singlet excitation, results analogous to the triplet
case are found. Again the FOSEP result505E®) coincides
We now discuss approximations to tfengle} excitation  with the exact excitation energyEs,=Eg,~ Eo. The TDA
from | W) into |S,) and the(triplet) excitation into one of result evaluates to
the|T;) states. E.g. the triplet excitation infd_,) is defined
by a particle-hole excitation from thig|) to the |uT) or-
bital. The TDA matrix for this triplet excitation is one di-
mensional because the excited state is uncorrelated. There-
fore the TDA result for the triplet excitation energy while the RPA yields

B. Results for TDA, RPA, and FOSEP

A
AEL =21+ 5 U (51)
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triplet IV. CONCLUSIONS
2\ ] In this paper we have presented an approximation scheme
ijix{::-l_xiiiiiiiof:(pl for the calculation of energies and transition moments of
S \\\\ many-body systems. It derives from the first-order approxi-
ke g \\\\-1“ ] matiion to the self-energy Qf a recently proposed extepded
] particle-hole Green'’s functiohl4]. The resulting approxi-
S 4! | mations for excitation energies and transition moments prove
< FosEP(x) consistent in first order but also higher-order terms are
@-6 _ . ] present. Starting out from a Hartree-Fock single-particle de-
g 0.2 04 0.6 08 1 scription, the FOSEP approximation yields a matrix eigen-
o value problem of the same size as the well-kng®RRPA). In
g contrast to the RPA, however, FOSEP presents a Hermitian
2 FOSEP(p) . . . s
Z gl ] eigenvalue problem and thus av0|_ds t_he instabilities of the
= TDA_ . RPA. Although the FOSEP approximation has many proper-
vt 6 - ] ties in common with the RPA, such as size consistency and
® 4t T RPA(D) 1 the invariance with respect to unitary transformations of the
2 - Hartree-Fock virtual orbitals, there are also substantial dif-
ferences. We have shown by a perturbation theoretical analy-
0:;____.______702”_@)— sis up to second order that the FOSEP approximation for the
) T excitation energies consistently includes part of the ground-
4t ““---—---_-_-_____________R_;:i(u) ] state correlation whereas the RPA proves inconsistent in this

respect. This statement is supported by the results of a very
02 04 0.6 08 1 simple exactly solvable model. In the considered model the
perturbation parameterA ground state is correlated whereas the approximated excited
states are not. It turned out that the FOSEP approximation
. yields the exact results for the excitation energies whereas
_ FIG. 1. The eigenvalues of the FOSEP, RPA, and TDA equahe RpA does worse than the simpler TDA. We also have
tions fﬁr thhe t'.”pllet and the singlet ex0|tat|or;O%§RSelsct;|ble(é In the, ydressed the equivalence of the length and velocity forms of
text. The physical FOSEP excitation energlds """ [labeled as 0 " yransition moments. The exact preservation of this
FOSERp)] coincide with the exact excitation energies. The param- . . . s
" equivalence is a very peculiar property of the RPA. Within
eters of the Hubbard model are chosentasl and U=10. Al the FOSEP approximation this equivalence is only preserved
energies are given in units ét For the triplet excitation, the RPA . . S - .
becomes unstable yielding complex eigenvalues\ioi0.2. in first order, which is consistent for a first-order schemg.
The second-order error encountered, however, may provide
useful in estimating the applicability of the approximation.
AEQUPA(D): VALT+2AtU. (52 Future calculati(g)]ns on F;galistic gystems sFt)llrl) have to pro-
vide the ultimate test for the usefulness of the approximation
A plot of these result with the same choice of parameters ascheme presented here. From the present point of investiga-
for the triplet excitation is shown at the bottom of Fig. 1. tion the FOSEP method seems to have excellent prospects
The Hubbard parameters used for the plots in Fig. 1 havéor finding widespread application such as, e.g., in clarifying
been chosen such that the differences between the three firgite electronic structure of larger molecules, especially when
order approximations are large and become apparent. Wheground-state correlation is important. A possible line of ex-
the on-site repulsion terrd is decreased in comparison to tending the FOSEP method is to start out from a multicon-
the hopping parametdr the RPA becomes stable and the figurational self-consistent fieldMC-SCH reference state
differences between the discussed approximations diministinstead of the Hartree-Fock Slater determinght). This
From Eq.(44) it can be seen thadt is the source of ground- would allow for an adequate treatment of open-shell or other
state correlation in the model. Thus the present analysis sugystems where strong ground-state correlation prohibits the
ports the findings of Sec. Il D and leads to the conclusiorzeroth-order description by a Slater determinant. The first-
that among the three considered approximations for excitaerder particle-hole self-energy seems ideally suited for such
tion energies only the FOSEP method includes ground-staten extension since the primary matrices are defined without
correlation in a consistent manner. reference to occupied or virtual Hartree-Fock orbitals in con-
Of course, it is a special peculiarity of the present simpletrast to the RPA or TDA. Thus the inclusion of multiconfigu-
model that the FOSEP approximation already yields the exrational reference states provides a natural extension of the
act excitation energies. Certainly this model may seem inaderesent theory. Straightforward approximations to the static
equate to draw conclusions on the performance of FOSEParticle-hole self-energy can also be obtained from a ground-
for realistic large finite quantum systems that constitute thestate description by density-functional thedBFT). While
main area of possible applications. Therefore, this modeDFT has been very successful in predicting ground state
should not be understood as a test for large-scale numericptoperties, the DFT description of excited states is a vivid
calculations but rather as the simplest possible system wheand still open field of current interef31—-33,13. The static
the effect of ground-state correlation could be investigategarticle-hole self energy seems well suited for adaption to
analytically. DFT since it provides a simple model for excitation proper-
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ties that only requires a decent approximate description ({fHaa]rs r’s’=<Yrs|:&7’:{|Yr’s’>
one and two particle densities in the ground state as input as” ’

discussed in the Appendix. A direct formulation of the

=(Wo|[ala, [H.a]as 1] ¥0)

particle-hole self-energy in terms of density functionals, on ~ :
the other hand, may as well lead to powerful approximations. +(Wol{[H,a,.],a}| Vo) (Volagag Vo)

Another open point is the development of higher-order ap-
proximations to the particle-hole self-energy. This will allow

+(¥ol{a ,ajr}|‘l'o><‘[’o|[|:| ,ag]al|¥o)

us to increase the accuracy and lift the present restriction to ~
Y ’ +(Wol[H.a) Ja | Wo)(Wol{as .all|Wo)

particle-hole type excitations. A realization of systematic
higher-order approximations could follow the concepts of
correlated excited states and intermediate state representa-

tions developed in Ref$18,19 and is left for future work.
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APPENDIX

+H(Wolaal, [ Wo)(Wol{[H,as],al}[Wo).
(A1)

Here|¥,) denotes the exact ground state of the system. In
general, Eq(A1) requires the evaluation of ground-state ex-
pectation values of one- and two-particle operators. This is
due to the particular combination of commutators and anti-
commutators and to the fact that the Hamiltonidnis a
two-particle operator. But this means that the primary block
Haa and therefore the static particle-hole self-energy can be
calculated exactly if the general one and two-particle densi-
ties of the ground state are known. Approximating the exact
ground statéW¥ ) by a Slater determinant leads to a factor-

The general formalism behind the theory of extended tWO{zation of the two-particle densities and the first-order ex-
particle Green’s functions is described thoroughly in Ref-pression(lZ) is obtained. Other approximations for the den-

[14], where also the definition of the statg§), the metric
, and the generalized excitation energy operdtocan be

sities than those obtained by the Hartree-Fock Slater
determinant are of course also possible. Density-functional

found. Here we only want to show one result of the generatheory, on the one hand, or a multiconfigurational MC-SCF

theory: The general expression for the primary bléck, of
the excitation energy operator matrix is given by

approximation for the ground-state wave function, on the
other hand, provide interesting alternative approaches.
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