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First-order static excitation potential: Scheme for excitation energies and transition moments

Joachim Brand and Lorenz S. Cederbaum
Theoretische Chemie, Universita¨t Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany

~Received 23 October 1997!

We present an approximation scheme for the calculation of the principal excitation energies and transition
moments of finite many-body systems. The scheme is derived from a first-order approximation to the self-
energy of a recently proposed extended particle-hole Green’s function. A Hermitian eigenvalue problem is
encountered of the same size as the well-known random phase approximation~RPA!. We find that it yields a
size consistent description of the excitation properties and removes an inconsistent treatment of the ground-
state correlation by the RPA. By presenting a Hermitian eigenvalue problem the new scheme avoids the
instabilities of the RPA and should be well suited for large-scale numerical calculations. These and additional
properties of the new approximation scheme are illuminated by a very simple exactly solvable model.
@S1050-2947~98!11806-1#

PACS number~s!: 31.50.1w, 32.70.Cs, 33.70.Ca, 21.60.2n
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INTRODUCTION

Many-body Green’s function theory has provided seve
standard approximation schemes for the calculation of e
tation properties in atoms, molecules, and atomic nuclei. S
ting out from a convenient single-particle description like t
Hartree-Fock approximation, these schemes usually lead
matrix eigenvalue problem. This supplies approximations
the excitation energies and transition operator matrix e
ments of the system. The starting point is usually the w
known polarization propagator@1#, a fundamental two-
particle Green’s function of nonrelativistic many-bod
theory. It is given by a sum of two terms that are related
symmetry~see, e.g., Ref.@2#!,

P rs,r 8s8~v!5P rs,r 8s8
ph

~v!1P rs,r 8s8
hp

~v!. ~1!

The so-called particle-hole partP rs,r 8s8
ph (v) already contains

all the physically relevant information exhibiting single pol
in the energy variablev at the exact excitation energies
the system. Its name originates in the single-particle pict
that is usually taken as the zeroth order in a perturba
theoretical treatment. Zeroth-order contributions toPph only
arise if the indicesr andr 8 are particle indices ands ands8
hole indices. We speak of a particle index if it refers to
virtual single-particle state, i.e., a state that is not occupie
a Slater determinant ground state whereas a hole index r
to an occupied single-particle state. The particle-hole p
thus primarily describes excitations which, in a sing
particle picture, may be understood as lifting one ferm
from an occupied orbital to a virtual one. In a correlat
system, however, there are no fully occupied or fully virtu
single-particle states and thus the exact particle-hole
contributes also for index pairs (r ,s) other than particle-hole
index pairs.

The various approximation schemes may be classified
the order in which the correlation is taken into account. A
other criterion for classification is which parts of the pola
ization propagator are included.

A simple first-order approximation scheme based onPph

is the so-called Tamm-Dancoff approximation~TDA! @1,3#.
It can be seen as the first-order approximation to the inve
571050-2947/98/57~6!/4311~11!/$15.00
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matrix of the particle-hole part. In a quantum chemical la
guage the TDA may be understood as treating the exc
states on the single-excitation configuration interaction~SCI!
level in comparison to an uncorrelated ground state. The
gebraic diagrammatic construction~ADC! approach@2,4#
represents a family of systematic higher-order approxima
schemes to the particle-hole part.

Another group of approximations results from includin
the second part of the polarization propagatorP rs,r 8s8

hp (v).
This part is called the hole-particle part because its zer
order vanishes unlessr andr 8 are hole indices ands ands8
are particle indices. In contrast to the particle-hole part
poles appear at the negative excitation energies. The fu
mental first-order approximation scheme, which treats b
parts of the polarization propagator on an equal footing
the so-called random phase approximation~RPA! @5,6,1,3#.
Among the many different ways of deriving this approxim
tion we want to focus on the role of the RPA as the fir
order approximation to the inverse matrix of the polarizati
propagator~1!. Naturally this matrix now comprises the s
of particle-hole as well as hole-particle configurations a
therefore has twice the dimension of the TDA matr
Among the higher-order schemes that treat both parts of
polarization propagator we want to mention the second-or
polarization propagator approximation~SOPPA! @7–9# and
the equation-of-motion~EOM! method@6,10#.

In the configuration interaction picture the RPA may
seen to include ground-state correlation in addition to
correlation of the excited states already accounted for in
TDA @8,11#. The RPA does so, however, in a nonvariation
manner and thus it is not obvious that the RPA yields i
proved results compared to the TDA. It has rather been
served that in certain cases the RPA excitation energies
worse than those of the TDA, also in systems where co
lation of the ground state is of special importance~for exem-
plary numerical comparisons see, e.g.,@12,13#!. In fact, we
will see later that the influence of ground-state correlat
onto the RPA excitation energies has to be regarded as
consistent with Rayleigh-Schro¨dinger perturbation theory
~see also Ref.@2#!. We will further study a simple mode
system for which the RPA gives much poorer results than
TDA. For this example an approximation method call
4311 © 1998 The American Physical Society
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4312 57JOACHIM BRAND AND LORENZ S. CEDERBAUM
first-order static excitation potential~FOSEP!, yields the ex-
act solution while posing a matrix eigenvalue problem of
same size as the RPA. Also, a perturbation theoretical an
sis shows that FOSEP consistently includes ground-state
relation.

The FOSEP method is a first-order approximation sche
that is derived from an extended particle-hole Green’s fu
tion @14# where additionally to the particle-hole and the ho
particle parts other propagator terms are present: The p
ization propagator has been augmented by combination
single-particle propagators that give rise to additional zero
order contributions in the particle-particle and hole-hole
dex spaces. The introduced terms are chosen such tha
extended Green’s function now satisfies a Dyson equat
which in turn defines a well-behaved~particle-hole! self-
energy in analogy to the fundamental single-particle Gree
function @1,15,16#. Earlier we have applied the general pr
cedure to the particle-particle propagator, another w
known two-particle Green’s function. We could show th
the self-energy of a suitably chosen extended two-part
Green’s function serves as an optical potential for ela
scattering of two-particle projectiles@17#. The particle-hole
self-energy, in turn, may be understood as a sort of ‘‘opti
potential for particle-hole excitations,’’ some general aspe
of which are discussed in Ref.@14#.

This paper is organised as follows: After a brief review
the relevant construction principles of the extended parti
hole Green’s functions we will define the FOSEP appro
mation and discuss the structure of the corresponding ma
eigenvalue problem in Sec. I. In the next section the prop
ties of the FOSEP approximation for excitation energies
transition moments are investigated on a formal level. F
the similarity to the RPA equations is pointed out in order
compare the properties of the two approximations~II A !.
Both schemes share the fundamental properties of size
sistency~II B ! and the invariance under unitary transform
tions of the occupied or virtual Hartree-Fock orbitals~II C!.
The differences between the two approximations will b
come apparent in Sec. II D when we will perform a pertu
bation theoretical analysis of the excitation energies up
second order. This analysis shows that the FOSEP app
mation includes part of the ground-state correlation in a c
sistent way while the RPA proves inconsistent with pert
bation theory in this respect. It follows an analysis of t
approximation for transition moments that is found to
consistent in first order. The last paragraph of Sec. II de
with the equivalence of length and velocity form of the tra
sition moments of the dipole operator, which are import
for the so-called oscillator strengths. In Sec. III the FOS
method is compared with the RPA and TDA in application
a simple exactly solvable model system.

I. THE FOSEP APPROXIMATION

The extended particle-hole Green’s function is one s
cies in a family of two-particle propagators that fulfil Dy
on’s equation. The general theory has been develope
Refs.@14,17#. Here we will only outline the main ideas tha
are relevant in the present context. The desired physica
formation like excitation energies and transition moments
contained in the poles and residues of the extended Gre
e
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function. Calculating these is equivalent to solving the eig
value problem related to a generalized excitation energy
erator Ĥ, which lives in an extended Hilbert spaceY.
Throughout this paper we assume a discrete eigenvalue s
trum for the relevant Hamiltonians since we are interested
finite basis set approximations. The generalization to c
tinuous spectra, however, poses no particular problem.

A basis of the extended Hilbert spaceY is given by the set
of states$uQI&%, which are chosen ‘‘orthonormal’’ with re-
spect to an indefinite metricm̂:

^QI um̂uQJ&56d IJ . ~2!

A model space is spanned within the full space by a subse
basis states$uYrs&%. This model space is supposed to allo
the description of those excitations that are predominantly
particle-hole type. Direct reference to ‘‘occupied’’ and ‘‘vir
tual’’ single-particle states is avoided by allowing the indic
r and s to range over the full set of single-particle indice
each. The statesuYrs& are chosen to include~ground-state!
correlation being ‘‘correlated excited states’’ in the sense
Refs.@18,19#. On the other hand, they are constructed ma
festly ‘‘orthonormal,’’ i.e., satisfying

^Yrsum̂uYr 8s8&5d rr 8dss8 ~3!

exactly and in each order of perturbation theory. It is a s
cial property that all states in the primary subset$uYrs&% have
positive norm. The construction of states with the describ
properties presents the crucial step in developing the the
of extended particle-hole Green’s functions. Explicit expre
sions for the particular choice used in this paper can be fo
in Ref. @14# together with a thorough discussion of the co
struction principles and the remaining freedom of choice

The basis$uQI&% defines a matrix representationH= of the
generalized excitation energy operatorĤ. The subdivision of
the basis into the basis of the model space$uYrs&% and the
complementary part superposes a block structure onto
matrix:

H= 5SH= aa H= ab

H= ba H= bb
D . ~4!

The indexa refers to the model space andb to its comple-
ment. The primary blockH= aa of this matrix is given by

@H= aa# rs,r 8s85^Yrsum̂ĤuYr 8s8&. ~5!

Explicit expressions for this matrix may be found in the A
pendix and are derived in Ref.@14# where, also, a physica
interpretation as a static particle-hole scattering potentia
the case of Coulomb interacting particles is given. In t
following we will investigate the first-order approximation t
this matrix within the framework of many-body perturbatio
theory.

In order to apply perturbation theory the many-bo
HamiltonianĤ has to be split into two partsĤ0 and Ĥ1 as
usual. The choice of the one-particle operator

Ĥ05(
i

« iai
†ai ~6!



as

il-
In
e
e

d

th

a

x-
a
s

ul
t

nc
th
no
e
re

g

no-

r,
r

to

ing
tor

so-
for

ds

n-

ri-
d

u-
led
the

n-
is

ita-
ied

r
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as characterized by the diagonalizing single-particle b
$uw i&% and single-particle energies$« i% defines the zeroth
order of perturbation theory. The residual interactionĤ1

5 v̂1V̂ contains contributions of a one-particle operatorv̂
and a two-body interactionV̂:

v̂5(
i , j

v i j ai
†aj , ~7!

V̂5
1

2 (
i , j ,k,l

Vi jkl ai
†aj

†alak . ~8!

In particular, we are interested in the Mo” ller-Plesset par-
titioning of the Hamiltonian where the zeroth-order Ham
tonian Ĥ0 is defined by the Hartree-Fock approximation.
the case of a nondegenerate ground state the matrix elem
v i j of the one-particle part of the interaction are then giv
by

v i j
HF52(

k
nkVik@ jk# . ~9!

HereVrs@r 8s8#5Vrsr8s82Vrss8r 8 denotes the antisymmetrize
matrix element of the two-body interaction andnr is the
occupation number of the orbitaluw r& in the zeroth-order
ground-state Slater determinantuF0&.

The zeroth order of the primary blockH= aa from Eq. ~5!
yields the matrix«= of zeroth-order excitation energies:

@Haa# rs,r 8s8
~0!

5@«= # rs,r 8s85~« r2«s!d rr 8dss8 . ~10!

This reflects the fact that in our ansatz the first index in
pair rs has to be understood as marking the orbital~position!
into which a particle is created and the second index
marking the orbital where a particle is destroyed~or a hole
created!.

The main motivation for developing the theory of the e
tended particle-hole Green’s function was that it fulfils
Dyson equation and therefore possesses a particle-hole
energyS= ~v! @14,17#. This self-energy may be seen to res
from a partitioning of the eigenvalue problem associated
the matrixH= with respect to the primary blockH= aa . The
energy independent~‘‘static’’ ! part of the self-energyS= ~`! is
defined by the primary block minus its zeroth order:

S= ~`!5H= aa2«= . ~11!

The significance of this part is to describe the the influe
of correlation to particle-hole excitations that remains in
high-energy limit, i.e., when the ‘‘target particles have
time to rearrange upon the influence of the particle-hole
citation.’’ The lowest-order contributions to this matrix a
of first order. The energy-dependent~‘‘dynamic’’ ! part of the
self-energyS= (v)2S= (`) takes account of the remainin
blocks of the matrixH= and starts in second order.

The first-order contributions to the~static! self-energy are
given by
is
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@S= ~`!# rs,r 8s8
~1!

5@H= aa# rs,r 8s8
~1!

5v rr 8dss82vs8sd rr 81Vrs8@sr8#

3~ n̄rns2nrn̄s!~ n̄r 8ns82nr 8n̄s8!

1dss8(
k

nkVrk@r 8k#2d rr 8(
k

nkVs8k@sk#

~12!

for a general Hamiltonian where we have introduced the
tation n̄r512nr . Expression~12! may be readily derived
from the general expression for the primary blockH= aa ,
which can be found in the Appendix. In the Mo” ller-Plesset
case~9!, the first order simplifies even further. In particula
it is this approximation that we will refer to as first-orde
static excitation potential~FOSEP!:

@S= FOSEP# rs,r 8s85Vrs8@sr8#~ n̄rns2nrn̄s!~ n̄r 8ns82nr 8n̄s8!.
~13!

Now the following Hermitian eigenvalue problem remains
be solved:

~«=1S= FOSEP!XI 5vXI . ~14!

The ~physical! eigenvaluesv provide approximations to the
excitation energies of the system and the correspond
eigenvectorsXI may be used to calculate transition opera
matrix elements~transition moments!. The transition mo-
ments corresponding to the dipole operator define the
called oscillator strengths, which are of great importance
photoabsorption and emission processes@8#. The FOSEP ap-
proximation for transition operator matrix elements rea
@14#

^C0uT̂uCm&FOSEP5(
i j

Ti j Xi j
m , ~15!

whereTi j are the matrix elements of the~one-particle! tran-
sition operatorT̂, andXi j

m are the components of the eige
vector associated to an excitation into the stateuCm&.

Due to extensions included in the definition of the p
mary statesuYrs&, however, not all of the eigenvalues an
eigenvectors of Eq.~14! correspond to ‘‘physical’’ excita-
tions. More insight may be gained by looking at the partic
lar block structure of this eigenvalue problem that is revea
when splitting the set of index pairs according to whether
indices relate to occupied~hole! or unoccupied~virtual or
particle! orbitals. In zeroth order only the diagonal matrix«=
is present and the distinction between ‘‘physical’’ and ‘‘u
physical’’ excitations is obvious, since the ground state
approximated by a Slater determinant. In this case exc
tions of a single particle are possible only from an occup
into a virtual orbital. Thus only theph-ph block is ‘‘physi-
cal.’’ In the first-order~FOSEP! approximation the secula
matrix has the following structure:
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«=1S= FOSEP5

hh

ph

hp

pp

hh ph hp pp

S «=
hh

0 0 0

0 «= ph1V= W= 0

0 W=̃ * 2«=̃ ph1V=̃ * 0

0 0 0 «= pp

D
~16!

The asterisk~* ! denotes complex conjugation for the matr
elements and the tilde (˜ ) denotes a simultaneous transpo
tion of the two index pairs that specify a matrix eleme
which simply means a renumbering of the rows and colum
of that matrix:

@A=̃ # rs,r 8s85@A= #sr,s8r 8 .

First of all we notice that the FOSEP self-energyS= FOSEP

does not contribute at all for pairs of orbitals that are b
occupied (hh) or both virtual (pp) and only the zeroth-orde
matrix «= remains. Thus thehh-hh and pp-pp blocks de-
couple from the rest of the matrix and the eigenvalue pr
lem ~14! for these blocks becomes trivial, simply yieldin
the Hartree-Fock orbital energy differences. These blocks
obviously not correlated in the first-order treatment. We w
to mention that this decoupling of thehh-hh and pp-pp
blocks is special to the Mo” ller-Plesset partitioning of the
Hamiltonian and to the particular choice of the extend
statesuYrs& considered in this paper. It does not appear
other choices discussed in Ref.@14#. The decoupling leads to
a considerable reduction of numerical effort and theref
justifies the present choice. Many of the properties discus
in the present paper, however, generalize also to first-o
approximations based upon other choices for the prim
extended statesuYrs&.

The ph block of the«= matrix «= ph contains those energie
that relate to a simple particle-hole excitation in a zero
order picture. The contribution of

@V= #ph,p8h85Vph8@hp8#

~h,h8occupied, p,p8 virtual orbitals! ~17!

in the ph-ph block describes the interaction of the uncorr
lated ground-state Slater determinant with a singly exc
configuration. In fact, diagonalizing theph-ph block «= ph

1V= on its own results in the well-known TDA@1#. The
couplingW= to thehp-hp block can be understood as takin
into account ground-state correlation as will be explain
later with the help of perturbation theoretical arguments
similar coupling also appears in the RPA@1#. The relation of
our approach to the RPA will be discussed in detail belo

Thehp-hp block by itself does not seem very physical
character at all. Its zeroth-order excitation energies are n
tive and result from creating a hole in a virtual orbital and
particle in an occupied orbital. Nevertheless, thehp-hp
block couples through the matrix

@W= #ph,h8p852Vpp8@hh8#

~h,h8 occupied, p,p8 virtual orbitals! ~18!
-
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with the physicalph-ph block and thus introduces a corre
tion to the Tamm-Dancoff excitation energies. Due to t
decoupling of thepp and hh blocks we are left with an
eigenvalue problem comprising the blocks of the FOS
matrix with ph andhp indices:

M= FOSEPxI 5vxI , ~19!

M= FOSEP5«=1S= FOSEPuph and hp blocks

5S «= ph1V= W=

W=̃ * 2«=̃ ph1V=̃ *
D . ~20!

This is the eigenvalue problem that has to be solved in
FOSEP approximation scheme. In contrast to the RPA it
Hermitian eigenvalue problem always yielding real eigenv
ues. In fact, in most cases the matrixM= FOSEPis real symmet-
ric.

As long as the interaction remains weak enough, there
clear distinction between ‘‘physical’’ eigenvalues of this m
trix and ‘‘unphysical’’ ones by the sign of these energie
Even with stronger interaction the distinction may still b
valid. This is understood easily when considering a mo
system where theph-ph block has dimension 1 and all ma
trix elements are real. The matrixM= FOSEPthen is two by two
and its eigenvalues are given by

6A«ph2
1W21V.

Thus we get one positive eigenvalue and a negative o
provided that

V2,«ph2
1W2.

Note thatV is the contribution of the correlation introduce
in the TDA and this condition now states that it has to
small enough compared to the zeroth-order excitation ene
augmented by the additional interaction termW. When this
condition is violated, or in general the numbers of positi
and negative eigenvalues in a given symmetry are not
same, the eigenvectors may be necessary to distinguish
tween physical and unphysical contributions. Still t
‘‘physical’’ approximation may usually be defined by th
upper half of the eigenvalues.

In the remaining sections of this paper we will discuss
FOSEP approximation as defined above. It presents the n
ral first step in approximating the particle-hole self-ener
S= ~v! and thus the matrixH= . At this place we want to men
tion that other approximations, for example, result by au
menting the primary set of statesuYrs&. In particular, one can
obtain the RPA straightforwardly via the formalism of e
tended Green’s functions. This is achieved by additiona
including a subset of the basis$uQI&% consisting of states
with negative norm that are degenerate~in zeroth order! to
the hole-particle fraction of the set$uYrs&% @14#. This aug-
mented set of states defines an extension of the prim
blockH= aa in the matrixH= . In first order this extended matrix
can be decoupled with the help of a unitary transformat
into the RPA eigenvalue problem and additional unphysi
blocks. Thus the RPA is included in the general theory a
specific approximation. Note, however, that FOSEP prese
the canonical first-order approximation in our ansatz sinc
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is based upon the primary set of states$uYrs&% that defines
the Green’s function and self-energy matrices.

II. PROPERTIES OF THE FOSEP APPROXIMATION

In this chapter we will discuss some general properties
the FOSEP approximation. In order to elucidate the relat
to the well-known first-order approximation schemes R
and TDA we start with briefly reformulating the RPA in ou
notation; we then consider two fundamental invarian
FOSEP shares with RPA and TDA, namely, size consiste
and invariance with respect to unitary transformations of
single-particle basis. In order to show the differences
tween the three schemes we will carry out a perturba
theoretical analysis for the excitation energies as well as
the transition moments. Finally, the equivalence of the len
and velocity forms of the dipole operator transition mome
is discussed.

A. Relation to the RPA

The RPA @1,3# for the calculation of excitation energie
and transition operator matrix elements in finite Fermi s
tems may be derived and understood in many different wa
Traditionally the RPA is derived by the infinite summatio
of a certain type of diagrams in the Feynman-Dyson per
bation series of the polarization propagator@5#. Equivalently
it can be understood as a first-order approximation to
integral kernel of the Bethe-Salpeter equation@20# or as a
specific first-order approximation in the equation of moti
of the polarization propagator@6,8#. Now we are going to
present the RPA equations in a form suitable for compari
with FOSEP.

Based upon a Hartree-Fock zeroth order the RPA is
fined by the following eigenvalue problem@21#:

~«=m= 1R= !xI 5vm= xI . ~21!

The matrix«= is defined as in Eq.~10!. The RPA kernelR=
consists of the matrix elementsRrs,r 8s85Vrs8@sr8# and the
metrical matrixm= is given by

@m= # rs,r 8s85d rr 8dss8~ n̄rns2nrn̄s!. ~22!

Note that in block matrix notationm= can be written as

m= 5S 1= 0=

0= 21= D . ~23!

All of these matrices are indexed by pairs of single-parti
indices that are required to be either particle-hole or ho
particle index pairs. Thus the RPA eigenvalue problem
the same size as the FOSEP one~19!. The essential differ-
ence is the appearance of the indefinite metricm= in the RPA
case which renders the RPA problem a non-Hermitian eig
value problem. As a consequence the RPA may become
stable and lead to complex eigenvalues@8#. The RPA kernel
R= is related to the FOSEP self-energyS= FOSEPin the follow-
ing way:

S= FOSEP5m= R= m= . ~24!

Introducing the matrix
f
n

s
y
e
-
n
r

h
s

-
s.

r-

e

n

e-

e
-
s

n-
n-

M= RPA5«=m= 1S= FOSEPuph and hp blocks

5S «= ph1V= W=

W=̃ * «=̃ ph1V=̃ *
D ~25!

with the same nomenclature as in Eqs.~17! and ~18!, the
RPA eigenvalue problem may be rewritten to

M= RPAxI 85vm= xI 8 ~26!

with xI 85m= xI . Comparing the RPA~26,25! with the FOSEP
eigenvalue problem~19,20! we see that both have the sam
size and start from the same input data while the differe
lies in some minus signs. Before analysing the differen
further we want to discuss two fundamental properties t
are shared by both schemes.

B. Size consistency of FOSEP

The question of size consistency of a many-body meth
is the question of whether the resulting approximations
physical quantities scale correctly with the size of the syst
@22,23#. The general question is difficult to answer and us
ally one has to resort to simple models or numerical cal
lations. Nevertheless, this concept becomes very impor
for applications to large or extended systems. In the con
of finite systems, especially molecules, the so-called sepa
fragment model provides a useful test of correct scaling
havior. We consider a many-body system consisting of t
or more separate~noninteracting! subsystems~fragments!.
Size consistency of excitation energies and transition m
ments then means that an excitation that is local to one of
subsystems is approximated with the same result regard
of whether the approximation scheme is applied to the
system or only to the fragment. A sufficient but not nece
sary condition for this property is that the secular equatio
of the approximation scheme give rise to independent set
equations corresponding to local excitations on the in
vidual subsystems. Thisa priori decoupling of independent
local equations is known as the separability property@24#.

The separability of FOSEP and RPA is proven by t
following arguments: In the model of separating fragme
the Hamiltonian of the full system is given by the sum of t
Hamiltonians of the subsystems. This implies that t
~Hartree-Fock! single-particle statesw r may be chosen loca
to either fragment and that the matrix elements of the tw
body interactionVi jkl vanish unless all indicesi jkl relate to
states belonging to the same subsystem. From the defin
of the FOSEP matrix~13!, ~20! and the RPA matrix~25! it
therefore becomes clear that both methods have the se
bility property and thus can be regarded as size consist
The same arguments apply to the TDA to which the FOS
and RPA reduce in the case of vanishing couplingW= as
explained in Sec. I. For nonlocal excitations the excitat
energy is simply given by the difference of the singl
particle ~Hartree-Fock! energies for all three schemes. Th
means that the level of approximation is that of Koopma
theorem, which provides a consistent first-order descript
We want to mention that the separability property is by
means a matter of course for more accurate many-b
methods such as, for example, the general configuration
teraction~CI! method@25#.



o
efi
ha
th
nl
ns
a-
ia
s
ri
to
t
a

rd

st

le
c
a
ile

e
et
l-

ns
an
l
ls

f
s
io
a

cl

as
tri

b
A

ti
ry

es
n
n

-

-

f
n
In

at

sis.
act

first
ion
for-
x-

EP
m
ies
rd

-
it is
i-

can
tate

es-

-

tate
he
d
n-

ant

alu-

om

in
-

4316 57JOACHIM BRAND AND LORENZ S. CEDERBAUM
C. Unitary transformations of single-particle orbitals

In order to separate the influence of finite truncations
the underlying single-particle basis from the systematic d
ciencies of a given approximation scheme it is important t
the approximation is invariant with respect to rotations of
single-particle basis. A global invariance is self-evident o
for ‘‘exact’’ methods such as full CI. Systematic truncatio
of the CI matrix employing single, double, or triple excit
tions on a given reference configuration are at least invar
with respect to transformations of the single-particle ba
that do not mix occupied and virtual orbitals. Such an inva
ance usually does not apply for perturbative propaga
methods. The FOSEP method as well as the RPA and
TDA, however, share this invariance with the CI where
higher-order methods usually do not. For the second-o
polarization propagator approximation~SOPPA! method the
influences of rotations of the orbital set have been inve
gated numerically@26#.

A physical motivation for altering the single-partic
functions may be drawn from the fact that the Hartree-Fo
virtual orbitals describe additional test particles in a me
field and therefore constitute rather diffuse functions wh
the main effects of correlation show up at short range du
ineffective screening. Thus one can hope to achieve a b
description of the influence of correlation with more loca
ized virtual orbitals than the Hartree-Fock ones.

Within a perturbation theoretical approach a unitary tra
formation within the set of virtual single-particle states c
be realized by adding a~Hermitian! single-particle potentia
to Ĥ0 of Eq. ~6! that takes effect only on the virtual orbita
and subtracting it again fromĤ1 of Eq. ~7!. The new single-
particle basis is then defined as the diagonalizing basis
the new zeroth-order Hamiltonian. Obviously the new ba
is connected to the original one by a unitary transformat
that leaves invariant the occupied single-particle states
also does not affect the Slater determinantuF0& preserving
the distinction between occupied and virtual single-parti
states. From the definitions of the matrices~10,13! it can be
seen that such a transformation of the single-particle b
also results in a unitary transformation of the secular ma
in Eq. ~14!, which preserves its block structure~16!. There-
fore also the FOSEP eigenvalue problem~19,20! transforms
without changing its eigenvalues. This argumentation can
transferred analogously to the closely related RPA and TD
Summarizing, we have seen that the FOSEP approxima
as well as the RPA and TDA are invariant under unita
transformations within the set of virtual single-particle stat
It is easily seen that this property generalizes to unitary tra
formations of the orbital basis that do not mix occupied a
virtual orbitals.

In a much more general sense, however, the matrixH= aa
of Eq. ~5! that forms the primary block of the matrix repre
sentationH= of the excitation energy operatorĤ is invariant
under ~unrestricted! unitary transformations of the single
particle space. Since the only unknown quantity inH= aa @see
also Eq.~A1! in the Appendix# is the exact ground state o
the system, the invariance properties of an approximatio
H= aa follow the chosen approximation for the ground state.
other words: The eigenvalues of the matrix of Eq.~A1! de-
pendonly on the chosen approximation for the ground st
f
-
t

e
y

nt
is
-
r

he
s
er

i-

k
n

to
ter

-

or
is
n
nd

e

is
x

e
.

on

.
s-
d

to

e

and not on the particular choice of the single-particle ba
In the special case of a system of particles which inter
only with a one-particle potential, the primary blockH= aa is
even independent of the ground state. In this case the
order already provides the exact solution for the excitat
energies and is invariant with respect to any unitary trans
mations of the single-particle basis. This property is e
plained in more detail in Ref.@14#.

D. Perturbation theoretical analysis of the excitation energies

In order to analyze the differences between the FOS
approximation, the RPA, and the TDA we will now perfor
a perturbation theoretical analysis of the excitation energ
up to second order and compare with straightforwa
Rayleigh-Schro¨dinger perturbation theory following Ref.@2#.
Usually the Rayleigh-Schro¨dinger series itself is not a reli
able method for calculating energies of excited states but
very helpful for analyzing and comparing different approx
mation schemes.

We assume that the Rayleigh-Schro¨dinger series starting
from the singly excited Slater determinant

uFab&5aa
†abuF0& ~27!

converges towards the excited stateuCab&. Note that herea
has to be a particle index andb a hole index.

An expression for the second-order excitation energy
be gained by subtracting the expressions for the ground-s
energyE0 from the excited-state energyEab . Up to second
order the ground-state energy is given by the familiar expr
sion

E0~2!5E0~1!1U0
~2p-2h! , ~28!

whereE0(1)5^F0uĤuF0& is the first-order ground-state en
ergy. The term

U0
~2p-2h!52(

i , j
k, l

uVi j @kl#u2

« i1« j2«k2« l
n̄i n̄ jnknl ~29!

denotes the second-order contribution to the ground-s
correlation. The given approximation is known as t
Mo” ller-Plesset~MP! 2 approximation and extensively use
in quantum chemistry. In the configuration interaction la
guage the second-order termU0

(2p-2h) may be interpreted to
present interactions of the ground state Slater determin
uF0& with two particle-two hole configurations.

The second-order energy of the excited state is also ev
ated straightforwardly and can be found in Ref.@2#. The
excitation energy up to second order then reads

DEab~2!5Eab~2!2E0~2!

5DEab~1!1Uab
~p-h!1Uab

~2p-2h!1Rab , ~30!

whereDEab(1)5«a2«b2Vab@ab# is the first-order excita-
tion energy. The termsUab

(p-h) and Uab
(2p-2h) denote second-

order contributions to the excited state’s energy arising fr
the interaction of the configurationuFab& with ~other! p-h
and 2p-2h configurations, respectively, and can be found
Ref. @2#. The partRab is the remainder of a partial cancella
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tion of the second-order ground-state correlation te
U0

(2p-2h) of Eq. ~29! with a contribution to the correlation o
the excited state. It can be written as the sum of three te

Rab5Rab
1 1Rab

2 1Rab
3 , ~31!

where

Rab
1 5 (

j ,k,l
k, l

k,lÞb

uVa j @kl#u2

«a1« j2«k2« l
n̄ jnknl ,

Rab
2 5 (

i , j ,l
i , j

i , j Þa

uVi j @b l #u2

« i1« j2«b2« l
n̄i n̄ jnl , ~32!

Rab
3 5(

j ,l

uVa j @b l #u2

«a1« j2«b2« l
n̄ jnl .

These contributions are left over fromU0
(2p-2h) , correspond-

ing to the special cases wherei 5a or k5b in the sum of
Eq. ~29!. The rest ofU0

(2p-2h) is cancelled by contributions
from the excited state.

We are now in a position to compare with the secon
order excitation energies from the TDA, the RPA, and
FOSEP scheme. The approximations for the excitation e
gies in these schemes are found by solving the eigenv
problem related to the corresponding matrix. Basic ma
perturbation expansion leads to the second-order approx
tion for the eigenvalue. We find the following:

DEab
TDA~2!5DEab~1!1Uab

~p-h! , ~33!

DEab
RPA~2!5DEab~1!1Uab

~p-h!2Rab
3 , ~34!

DEab
FOSEP~2!5DEab~1!1Uab

~p-h!1Rab
3 . ~35!

All three approximation schemes are consistent in first or
with the Rayleigh-Schro¨dinger expression~30!. Therefore
they are correctly referred to as first-order schemes.
zeroth- and first-order contributionsDEab(1) originate in
the diagonal matrix elements of theph-ph block ~TDA
block! of the matricesM= FOSEP and M= RPA of Eqs. ~19!,~25!
whereas the second-order terms come in by the diagona
tion procedure. Neither of the three schemes reproduce
second-order expression~30! completely. This is only
achieved by more accurate and more costly schemes su
the second-order algebraic diagrammatic construc
@ADC~2!# or SOPPA.

The termUab
(p-h) describes part of the second-order cor

lation of the excited state as can be seen from Eqs.~30! and
~28!,~29!. It is the only second-order contribution to the TD
excitation energy and originates in the off-diagonal part
the TDA matrix, which also constitutes theph-ph block of
the FOSEP matrixM= FOSEP. In the FOSEP and the RPA ex
pressions the additional termRab

3 is present, which has al
ready been identified as part of the ground-state correlat
Comparing with the second-order perturbation expans
~30!, however, we notice that it appears with the wrong s
in the RPA excitation energy in contrast to FOSEP, wh
s,
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the sign is consistent with the Rayleigh-Schro¨dinger expan-
sion. This term comes in through the coupling of theph with
the hp block in the FOSEP matrixM= FOSEPof Eq. ~19! and
the RPA matrixM= RPA of Eq. ~25!, respectively. We recal
that the only difference between the FOSEP and the R
equations are minus signs in thehp-hp blocks of the secular
matrices and the RPA metric. These carry through to
second-order expressions and prove inconsistent w
Rayleigh-Schro¨dinger perturbation theory in the RPA case

It is interesting to note that each of the three parts ofRab
of Eq. ~32! is positive. Thus the RPA always lowers the TD
excitation energies in second order whereas the FOSEP
proximation increases the energies in accordance with
positive sign of the full correctionRab . Taking into account
that the TDA approximates the ground state by the va
tional Hartree-Fock method, it is sensible to expect an
crease in the excitation energies when ground-state cor
tion is additionally taken into account. Therefore we m
conclude that the FOSEP scheme includes ground-state
relation in a consistent way in contrast to the RPA, whi
does not.

Concerning the termUab
(2p-2h) in the full second-order ex-

pression~30!, which is missing in all three schemes, we r
mark that it does not carry a definite sign$as can be seen
from Eq. ~68c! of Ref. @2#%. It may, however, lower the en
ergy of the excited state and thus can possibly overcomp
sate for the influence of the ground-state correlation. In t
way the RPA result may be supported by accidental num
cal compensation.

E. Perturbation theoretical analysis of the transition moments

We now will show that transition operator matrix ele
ments between the ground state and an excited state ca
contrast to TDA, be approximated by FOSEP consistently
first order. We consider the transition moment

Tab5^C0uT̂uCab& ~36!

of the ~one-particle! transition operatorT̂ for the particle-
hole excited stateuCab& that was introduced in the last para
graph. Up to first order the perturbation expansion yields

Tab~1!5^F0uT̂uFab&1^F0uT̂uCab
~1!&1^C0

~1!uT̂uFab&.
~37!

Explicit expressions for these terms derive from straightf
ward Rayleigh-Schro¨dinger perturbation theory and may b
found in Ref.@2#.

In an analogous fashion to the preceding paragraph
above expression may be compared to the result of ma
perturbation analysis of the TDA, RPA, and FOSEP appro
mations for the transition moments. It is easily seen that
FOSEP eigenvalue problem~14!, ~19! together with the ap-
proximation for the transition moments of Eq.~15! leads to a
consistent first-order approximation of the transition m
ments. For the TDA, the RPA, and the first- and seco
order ADC scheme the perturbation analysis has been ca
out in Ref.@2#. It has been found that the TDA expression
incomplete in first order because the term^C0

(1)uT̂uFab& is
missing. This term is a consequence of first-order grou
state correlation, which is neglected in the TDA. It is d
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scribed correctly in the RPA, which yields consistent tran
tion moments through first order. This may be seen to jus
the common statement that the RPA, in contrast to the TD
considers ground-state correlation. We want to mention
the transition moments are also described consiste
through first order in the ADC~1!, an approximation that is
equivalent to the TDA with respect to the excitation energ
but differs for the transition moments@2#.

F. Equivalence of the length and velocity forms
of the dipole operator transition moments

Now we will focus on the transition moments of the d
pole operator as a particular choice for the transition ope
tor. These transition moments are related to the so-ca
oscillator strengths and present important parameters cha
terizing the interaction of the many-body system with rad
tion. There is a hierarchy of equivalent representations of
exact dipole operator transition moments, starting with
so-called length and velocity forms. Without loss of gen
ality we consider only thez componentẐ of the dipole op-
erator. The identity

~Em2E0!^CmuẐuC0&52 i ^CmuP̂zuC0& ~38!

expresses the equivalence between the length and the v
ity forms of the dipole operator transition moments defin
by the left- and the right-hand sides of this equation, resp
tively. The z component of the momentum operatorP̂z is
related to the dipole operator by@Ĥ,Ẑ#52 i P̂z provided that
the Hamiltonian contains only local potentials such as, e
for Coulomb interacting electrons in atoms or mo
cules. Equation ~38! then follows from the identity
(Em2E0)^CmuẐuC0&5^Cmu@Ĥ,Ẑ#uC0&.

It is a very special property of the RPA to preserve t
equivalence exactly, provided the underlying Hartree-Fo
single-particle basis is complete@27#. In fact the RPA eigen-
value problem may be derived setting out from a CI rep
sentation of the ground- and excited-state wave functi
and requiring certain ‘‘hypervirial relations,’’ which prese
a slight generalization of the above-mentioned equivalen
@11#. Thus the exact fulfilment of these hypervirial relatio
may be regarded as unique to the RPA while other appr
mation schemes show, at most, a perturbative equivalenc
order to make the perturbation expansion transparent,
useful to introduce the functionD~l! as the difference be
tween the right- and the left-hand side of Eq.~38!. It is a
function of the usual interaction strength parameterl in Ĥl

5Ĥ01lĤ1. Owing to its nonlocal character, Hartree-Fo
does not preserve the length-velocity equivalence. He
choosingĤ0 to be the Hartree-Fock operator,D~l! in powers
of l does not vanish term by term; each order will in gene
give a nonvanishing contribution. The TDA approximat
only the zeroth-order term ofD~l! correctly, giving an error
in first order @i.e., O(l)]. The FOSEP approximatesD~l!
through the first order giving a second-order error. So d
the RPA that additionally has the unique property of rep
ducing the zeroD~l51!50. For completeness we mentio
that the first-order ADC@28# approximatesD~l! through the
first order while the SOPPA@29# as well as the second-orde
ADC @28# are consistent through the second order. The re
i-
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of equivalence through first order is another clue for the c
sistency of the FOSEP approximation. The second-order
ror between length and velocity forms provides a genu
test for the validity of the approximation. Depending on t
particular aims of an approximate calculation this may se
more favorable than having ana priori equivalence as in the
RPA, which hides the actual error with respect to the ex
value of the transition moments.

III. APPLICATION TO A SIMPLE MODEL

In this section we compare the FOSEP approximat
with the RPA, the TDA, and the exact solution for the ex
tation energies of a very simple model system. This mode
commonly referred to as the Hubbard model for the hyd
gen molecule H2 @30#. In the model, all excitation energie
can be calculated by analytic expressions in dependenc
two parameters which mimic the effects of Coulomb inte
action.

A. Definition of the model and exact solution

The Hubbard model for the diatomic Hydrogen molecu
represents each atomic site~R and R8! by a single orbital
electronic level denoted byuR& and uR8&, respectively. Each
level can be occupied by up to two electrons with oppos
spin. The single-particle part of the Hamiltonianĥ contains a
diagonal term

^RuĥuR&5^R8uĥuR8&5E, ~39!

which yields an energyE for each electron. The off-diagona
term describes attraction by the neighboring nucleus and
resents an amplitude for tunnelling or hopping of an elect
from one site to another:

^RuĥuR&5^R8uĥuR&52t ~,0!. ~40!

Additionally a two-particle interaction term is present th
yields a positive energyU whenever one level is occupied b
two electrons. This term represents the intra-atomic C
lomb repulsion between two localized electrons. Note that
interactions are independent of electron spin.

We consider the neutral H2 molecule, i.e., an occupatio
with two electrons. The solution of the Hartree-Fock equ
tions yields the~molecular! orbital functions

ug&5
1

&
~ uR&1uR8&!, uu&5

1

&
~ uR&2uR8&!, ~41!

while the corresponding Hartree-Fock single-particle en
gies read«g/u5E7t1 1

2 U. In the Hartree-Fock ground-stat
Slater determinantuF0&5ug↑g↓& the orbital ug& is doubly
occupied. In order to make transparent the transition betw
the Hartree-Fock approximation and the correlated prob
we introduce the additional~perturbation! parameter l
P@0,1# by using the Hamiltonian

Ĥl5Ĥ01lĤ1 , ~42!

where the Fock operatorĤ0 and the interaction Hamiltonian
Ĥ1 are defined as in Sec. I. The matrix elements of the tw
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body interactionVi jkl that defineĤ1 are given by the trans
formation ~41! into the atomic orbital picture.

There are six independent solutions for the two-elect
eigenstates of the system. According to the possible com
nations of the electrons’ spins three states of singlet sym
try uC0/1& and uSu& and a degenerate tripletuT21/0/1& are
found. The triplet and the singletuSu& states are uncorrelate
and have one electron in au and one in ag orbital. The
singlet stateuC1& corresponds to a 2p-2h excitation. It will
no longer be considered because it lies outside of the ra
of RPA, TDA, and FOSEP. The wave function of the sing
ground state is given by

uC0&l5alug↑g↓&1bluu↑u↓&, ~43!

where

al5
4t1A16t21l2U2

Al2U21~4t1A16t21l2U2!2
,

~44!

bl
2512al

2.

The dependence on the perturbation parameterl indicates
the influence of correlation, which only appears between
singlet Slater determinants ofg symmetry ug↑g↓& and
uu↑u↓&. In order to simplify the notation, we will drop th
subscriptl in the following. Note that the uncorrelated ca
corresponds tol50 wherea51 andb50. Therefore it is
clear thatuC0& is connected to the Hartree-Fock ground st
uF0&5ug↑g↓&. The energy eigenvalues of the exact sta
are given by

E052E1U2
l

2
U2A4t21

l2

4
U2,

ESu
52E1U, ~45!

ET52E1U2lU.

The excitation energiesDEi are defined as usual by the di
ference of the excited state’s energyEi to the ground-state
energyE0 . The energy related to the excitation into the tri
let, e.g., is thus given by

DET5ET2E052
l

2
U1A4t21

l2

4
U2. ~46!

Note that the expansion ofDEi into a power series inl
yields the Rayleigh-Schro¨dinger series of the excitation en
ergies, which has been discussed in a general context in
II D.

B. Results for TDA, RPA, and FOSEP

We now discuss approximations to the~singlet! excitation
from uC0& into uSu& and the~triplet! excitation into one of
the uTi& states. E.g. the triplet excitation intouT21& is defined
by a particle-hole excitation from theug↓& to the uu↑& or-
bital. The TDA matrix for this triplet excitation is one di
mensional because the excited state is uncorrelated. Th
fore the TDA result for the triplet excitation energy
n
i-
e-

ge
t

e

e
s

ec.

re-

DET
TDA52t2

l

2
U ~47!

coincides with the first order of Rayleigh-Schro¨dinger per-
turbation theory.

The FOSEP matrixM= FOSEP as well as the RPA matrix
however, have dimension 2 because of the coupling with
corresponding hole-particle configuration. The FOSEP m
trix for the triplet excitation is given by

M= T
FOSEP5S 2t2

l

2
U

l

2
U

l

2
U 22t2

l

2
U
D . ~48!

Its eigenvalues are given by

DET
FOSEP~p or u!52

l

2
U6A4t21

l2

4
U2. ~49!

As discussed in Sec. I we obtain physical and unphys
eigenvalues of which the latter do not carry any physica
relevant information. The distinction between the physi
and the unphysical eigenvalue is clear in the present c
becauseDET

FOSEP~p! is always non-negative whileDET
FOSEP~u!

is nonpositive for all choices of the parameters. Note that
physical eigenvalue yields the exact excitation ene
DET

FOSEP~p!5DET!
The close relation of the RPA eigenvalue problem to

FOSEP matrix was discussed in Sec. II A. The solutions
the RPA equations for the triplet excitation are given by

DET
RPA~p or u!56A4t222ltU. ~50!

Obviously the expression under the square root may bec
negative for certain choices of the parameters, in which c
the RPA becomes unstable.

A plot of the solutions of the FOSEP, the RPA, and t
TDA equations as a function of the perturbation parametel
for a particular choice of the Hubbard parameterst and U
can be found in the upper part of Fig. 1. For this cho
representing strong interatomic Coulomb repulsion, the R
becomes instable. As discussed in Sec. II D in the framew
of a second-order analysis, the RPA lowers the TDA va
whereas the FOSEP approximation yields a higher value
the excitation energy; that is correct in the present case.
have already mentioned that here only the ground stateuC0&
is correlated whereas the excited stateuT21& is not. This
ground-state correlation is correctly taken into account
the FOSEP approximation but not by the RPA. In the pres
simple model this goes even beyond second order as ca
seen from Eq.~46!.

For the singlet excitation, results analogous to the trip
case are found. Again the FOSEP resultDESu

FOSEP~p! coincides
with the exact excitation energyDESu5ESu2E0 . The TDA
result evaluates to

DESu

TDA52t1
l

2
U ~51!

while the RPA yields
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DESu

RPA~p!5A4t212ltU. ~52!

A plot of these result with the same choice of parameters
for the triplet excitation is shown at the bottom of Fig. 1.

The Hubbard parameters used for the plots in Fig. 1 h
been chosen such that the differences between the three
order approximations are large and become apparent. W
the on-site repulsion termU is decreased in comparison
the hopping parametert, the RPA becomes stable and th
differences between the discussed approximations dimin
From Eq.~44! it can be seen thatU is the source of ground
state correlation in the model. Thus the present analysis
ports the findings of Sec. II D and leads to the conclus
that among the three considered approximations for exc
tion energies only the FOSEP method includes ground-s
correlation in a consistent manner.

Of course, it is a special peculiarity of the present sim
model that the FOSEP approximation already yields the
act excitation energies. Certainly this model may seem in
equate to draw conclusions on the performance of FOS
for realistic large finite quantum systems that constitute
main area of possible applications. Therefore, this mo
should not be understood as a test for large-scale nume
calculations but rather as the simplest possible system w
the effect of ground-state correlation could be investiga
analytically.

FIG. 1. The eigenvalues of the FOSEP, RPA, and TDA eq
tions for the triplet and the singlet excitation as described in
text. The physical FOSEP excitation energiesDEFOSEP~p! @labeled as
FOSEP~p!# coincide with the exact excitation energies. The para
eters of the Hubbard model are chosen ast51 and U510. All
energies are given in units ofE. For the triplet excitation, the RPA
becomes unstable yielding complex eigenvalues forl.0.2.
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IV. CONCLUSIONS

In this paper we have presented an approximation sch
for the calculation of energies and transition moments
many-body systems. It derives from the first-order appro
mation to the self-energy of a recently proposed exten
particle-hole Green’s function@14#. The resulting approxi-
mations for excitation energies and transition moments pr
consistent in first order but also higher-order terms
present. Starting out from a Hartree-Fock single-particle
scription, the FOSEP approximation yields a matrix eige
value problem of the same size as the well-known~RPA!. In
contrast to the RPA, however, FOSEP presents a Herm
eigenvalue problem and thus avoids the instabilities of
RPA. Although the FOSEP approximation has many prop
ties in common with the RPA, such as size consistency
the invariance with respect to unitary transformations of
Hartree-Fock virtual orbitals, there are also substantial
ferences. We have shown by a perturbation theoretical an
sis up to second order that the FOSEP approximation for
excitation energies consistently includes part of the grou
state correlation whereas the RPA proves inconsistent in
respect. This statement is supported by the results of a
simple exactly solvable model. In the considered model
ground state is correlated whereas the approximated exc
states are not. It turned out that the FOSEP approxima
yields the exact results for the excitation energies wher
the RPA does worse than the simpler TDA. We also ha
addressed the equivalence of the length and velocity form
the transition moments. The exact preservation of t
equivalence is a very peculiar property of the RPA. With
the FOSEP approximation this equivalence is only preser
in first order, which is consistent for a first-order schem
The second-order error encountered, however, may pro
useful in estimating the applicability of the approximation

Future calculations on realistic systems still have to p
vide the ultimate test for the usefulness of the approximat
scheme presented here. From the present point of inves
tion the FOSEP method seems to have excellent prosp
for finding widespread application such as, e.g., in clarifyi
the electronic structure of larger molecules, especially wh
ground-state correlation is important. A possible line of e
tending the FOSEP method is to start out from a multico
figurational self-consistent field~MC-SCF! reference state
instead of the Hartree-Fock Slater determinantuF0&. This
would allow for an adequate treatment of open-shell or ot
systems where strong ground-state correlation prohibits
zeroth-order description by a Slater determinant. The fi
order particle-hole self-energy seems ideally suited for s
an extension since the primary matrices are defined with
reference to occupied or virtual Hartree-Fock orbitals in co
trast to the RPA or TDA. Thus the inclusion of multiconfigu
rational reference states provides a natural extension of
present theory. Straightforward approximations to the st
particle-hole self-energy can also be obtained from a grou
state description by density-functional theory~DFT!. While
DFT has been very successful in predicting ground s
properties, the DFT description of excited states is a vi
and still open field of current interest@31–33,13#. The static
particle-hole self energy seems well suited for adaption
DFT since it provides a simple model for excitation prope
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ties that only requires a decent approximate description
one and two particle densities in the ground state as inpu
discussed in the Appendix. A direct formulation of th
particle-hole self-energy in terms of density functionals,
the other hand, may as well lead to powerful approximatio
Another open point is the development of higher-order
proximations to the particle-hole self-energy. This will allo
us to increase the accuracy and lift the present restrictio
particle-hole type excitations. A realization of systema
higher-order approximations could follow the concepts
correlated excited states and intermediate state repres
tions developed in Refs.@18,19# and is left for future work.
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APPENDIX

The general formalism behind the theory of extended tw
particle Green’s functions is described thoroughly in R
@14#, where also the definition of the statesuYrs&, the metric
m̂, and the generalized excitation energy operatorĤ can be
found. Here we only want to show one result of the gene
theory: The general expression for the primary blockH= aa of
the excitation energy operator matrix is given by
-

hy

s

.

of
as

n
s.
-

to

f
ta-

-
.

l

@H= aa# rs,r 8s85^Yrsum̂ĤuYr 8s8&

5^C0u†as
†ar ,@Ĥ,ar 8

† as8#‡uC0&

1^C0u$@Ĥ,ar 8
†

#,ar%uC0&^C0uas8as
†uC0&

1^C0u$ar ,ar 8
† %uC0&^C0u@Ĥ,as8#as

†uC0&

1^C0u@Ĥ,ar 8
†

#ar uC0&^C0u$as8 ,as
†%uC0&

1^C0uarar 8
† uC0&^C0u$@Ĥ,as8#,as

†%uC0&.

~A1!

Here uC0& denotes the exact ground state of the system
general, Eq.~A1! requires the evaluation of ground-state e
pectation values of one- and two-particle operators. This
due to the particular combination of commutators and a
commutators and to the fact that the HamiltonianĤ is a
two-particle operator. But this means that the primary blo
H= aa and therefore the static particle-hole self-energy can
calculated exactly if the general one and two-particle den
ties of the ground state are known. Approximating the ex
ground stateuC0& by a Slater determinant leads to a facto
ization of the two-particle densities and the first-order e
pression~12! is obtained. Other approximations for the de
sities than those obtained by the Hartree-Fock Sla
determinant are of course also possible. Density-functio
theory, on the one hand, or a multiconfigurational MC-S
approximation for the ground-state wave function, on t
other hand, provide interesting alternative approaches.
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