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7.1 Introduction

The one-dimensional solitons described in Parts II and III of this book can
be extended into two and three dimensions. Such extensions are generally
unstable [1]. However, in the tightly confined geometries associated with
trapped Bose–Einstein condensates (BECs) both bright and dark solitons
extended into two and three dimensions can be stabilized for times longer
than the lifetime of experiments [2–4]. BECs offer the opportunity to tune a
matter-wave gradually from one to two and to three dimensions [5, 6]. In the
crossover regimes, new nonlinear objects can appear, such as the svortex, a
solitary wave which is a soliton-vortex hybrid [7, 8]. The general question of
crossover dimensions is an intriguing one in physics.

We will consider both the stable and unstable regimes of higher dimen-
sional solitons, treating such objects theoretically but with an eye towards
BEC experiments. BECs are typically contained in harmonic traps, and have
a profile ranging from Gaussian to inverse parabolic (cf. the Thomas–Fermi
limit in Sect. 4.3 of Chap. 1), depending on the interaction strength [5]. They
span tens to hundreds of microns. Their lifetime is on the order of one to a
hundred seconds. Both thermal and quantum fluctuations can play a signifi-
cant role in their dynamics [5]. We must take into account all of these factors
when discussing solitons. Moreover, the finite non-uniform nature of trapped
BECs leads to significantly different nonlinear dynamics than that found in
the GPE for uniform media. To cite a simple example, even in one dimension
with periodic boundary conditions the finite domain of the condensate leads
to spontaneous symmetry breaking and quantum phase transitions [9, 10].

There are also solitons which do not have a 1D analog. For instance,
a vortex–anti-vortex pair in 2D is a solitary wave as it represents a local-
ized excitation which moves coherently [11]. An example in 3D is a vortex
ring [12–14]. More complicated topological solitons, such as skyrmions, are
possible in multi-component condensates [15]. We will discuss such solitons as
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well. It is worth noting that some of these scenaria have also been addressed
in the context of nonlinear optics [16].

In keeping with the theme of this book, we will deal mathematically only
with the mean-field theory of BECs, described by the Gross–Pitaevskii Equa-
tion (GPE), and linear perturbations of the mean field, described by the
Bogoliubov–de-Gennes equations (BDGE), see Sect. 4 of Chap. 1. The GPE
and BDGE can be derived rigorously from first principles from a second quan-
tized quantum field theory for binary interactions between atoms in a dilute
weakly interacting Bose gas well below the critical temperature for Bose–
Einstein condensation, as discussed in Chap. 1 and the references therein. We
note that there are significant subtleties in interpretation of BDGE solutions;
see the appendix of [17] for a discussion of these issues. The GPE plus BDGE
picture has an excellent interpretation in terms of quantum fluid dynamics,
as discussed by Fetter and Svidzinsky [18].

Lastly, we note that the majority of higher-dimensional results, particu-
larly for non-uniform trapped BECs, are achieved numerically. Many excellent
references in computational science describe rigorous numerical methods for
the GPE and BDGE (e.g. [19] and references therein). Due to the paucity of
exact analytical results, we focus primarily on a coherent summary of numer-
ical studies.

We introduce a small set of notation before proceeding. The effective non-
linearity is given by geff = gN , which can be obtained by a simple rescaling
of the wavefunction amplitude. Then the wavefunction Ψ(r, t) is normalized
to unity. An axisymmetric harmonic trap can be characterized by its asym-
metry parameter λ ≡ ωz/ωr, where ωr is the radial trapping frequency and
ωz the axial trapping frequency. The harmonic oscillator lengths are given by
�z ≡√�/mωz and �r ≡√�/mωr.

7.2 Dark Solitons and Solitary Waves
in Higher Dimensions

7.2.1 Dark Band and Planar Solitons

In a three dimensional system a standing dark soliton takes the form of a
planar node; in two dimensions the node is a line, sometimes called a band.
When such a soliton moves with respect to the background condensate, the
notch fills in, so that the density in the region of the soliton is reduced but
does not form a node; a detailed description is provided in Part III. We term
these planar solitons and band solitons, respectively. In uniform media it is
well known that both planar and band solitons decay via the snake instability.
A sinusoidal mode transverse to the plane/band grows exponentially. The arcs
of this “snake” break off into vortex–anti-vortex pairs. In the context of Bose–
Einstein condensates, this has actually been suggested as a way to produce
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both vortices and anti-vortices in the same condensate, which is not otherwise
possible with the usual stirring techniques.

The decay time for band solitons has been calculated with the BDGE, i.e.,
by considering linear perturbations to band/planar dark soliton stationary
state of the GPE [20, 21]. Nonlinear instability times can be significantly
shorter, and are determined from the numerical integration of the GPE.
A band soliton then decays into an infinite chain of vortex anti-vortex pairs.
Depending on the initial condition, these pairs can join to form solitary waves
or annihilate in vortex–anti-vortex collisions.

The nonlinear dynamics following decay of a planar soliton can be signif-
icantly more complex, as linear excitations leading to the snake instability
can occur in two dimensions. The vortices produced are vortex lines which
can rotate and/or combine to form vortex rings [22]. Keeping in mind that
a velocity field can equally well be characterized by a vorticity field under
certain simple assumptions [13], the decay of large arrays of planar vortices
can lead to turbulence, characterized by densely tangled vortex lines [23,24].

In trapped BECs the situation is quite different. In the three-dimensional
harmonic trap the condensate, for sufficiently large nonlinearity, has a central
parabolic profile and Gaussian tails. In this regime, called the Thomas–Fermi
regime, as defined in Sect. 4 of Chap. 1, there is an additional mechanism
for instability. Since a planar soliton moves at a fraction of the sound veloc-
ity which depends on its depth, and the sound velocity is proportional to the
square root of density [5], the non-uniform density profile causes the soliton to
travel more slowly at the edges of the condensate than the center. An initially
uniform planar soliton formed in the center of the trap deforms into a U-
shaped propagation front. When this wavefront reaches the edge of the trap it
is deflected, and the trailing edges curl up to form vortices [25]. Thus there are
two competing instability mechanisms for planar dark solitons in BECs. In ini-
tial experiments on planar solitons, it was in fact the non-uniformity-induced
instability which dominated, as discussed in Chap. 8. Here, we emphasize the
snake instability.

Shown in Fig. 7.1 (reproduced with permission of the authors [4]) are
the precise dynamics of the snake instability in a harmonic trap for an ini-
tially stationary planar soliton with realistic experimental parameters. In
Fig. 1(a) the condensate contains 105 atoms and is in a spherical trap with
ωr = ωz = 2π×50 rad/s. The initial single planar soliton state is obtained with
imaginary time relaxation. Shown in the panels are snapshots after real time
propagation of 47, 50, and 77 ms for Fig. 1(a)(i)–(iii) and (iv)–(vi). In (i)–(iii),
the brightness is proportional to the condensate density, and the images corre-
spond to densities integrated down the line of sight. In (iv)–(vi), the brightness
is inversely proportional to the condensate density, and regions outside the
Thomas–Fermi sphere are rendered transparent in order to visualize nodes in
the condensate interior; the color corresponds to the phase: φ = 0 through 2π
is represented by the sequence red–green–blue–red. The view is perpendicular
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(i) (ii) (iii)

(v) (vi)(iv)

(a) Snake instability in a spherical trap

(b) Snake instability in a non-axisymmetric trap

Fig. 7.1. Dynamical instability of a single planar soliton in a trapped Bose–Einstein
condensates. See text for full description
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to the original nodal plane of the soliton; prior to the snake instability the
dark soliton would appear as a featureless disk.

In Fig. 1(b) the breakup of an initial planar soliton is shown as a function
of time for N = 106 atoms, ωx = 2π× 14 rad/s, ωy/ωx =

√
2, and ωz/ωx = 2,

the precise geometry of [25]. From the top left to the bottom right in raster
order are shown times t = 15–20 ms in 1 ms increments after the initial state
is formed. The view is along ŷ, and the Hamiltonian was constrained to even
parity along x̂ and ẑ for ease of computation. The rendering is identical to
that of Figs. 1(a)(iv)–(vi). The filamentation is almost entirely constrained to
the original nodal (x, z)-plane.

These figures describe only the mean-field picture. Recent studies have
shown that finite temperature can cause significant dissipative effects even in
one dimension [26, 27], while coupling to transverse modes can lead to dissi-
pation within the GPE/BDGE picture [28]. Moreover, even in one dimension
quantum fluctuations determined by the BDGE “blur” a dark soliton, due to
uncertainty in the position of the density minimum [29]. A full theory of dark
band and planar soliton dynamics with even lowest order finite temperature
and quantum effects remains a significant challenge to the computational and
theoretical scientific communities, although general theoretical prescriptions
in this direction exist [30–32].

7.2.2 Ring Dark Solitons and Spherical Shell Solitons

Another way to create a higher dimensional soliton is to wrap a band or
planar soliton back around on itself. In two dimensions this takes the form of
a nodal ring, termed a ring dark soliton. In three dimensions such an object
is a nodal spherical shell, termed a spherical shell soliton. These objects are
always unstable in harmonic traps, but can have lifetimes longer than that of
BEC experiments. Multiple ring solitons can be nested within each other. It is
mathematically intriguing that such solutions are nonlinear Bessel functions,
by which we mean solutions to the equation

η′′q +
1
χ
η′q −

q2

χ2
ηq − η3

q + ηq = 0 , (7.1)

where the wavefunction has been rescaled as

ψ(r, t) =
√
µ

g
ηq(χ) exp(iqφ) exp(−iµt/�) exp(iθ0) . (7.2)

Here µ is the chemical potential, q is the winding number of a central vortex, θ0
is an arbitrary phase, and the coordinate system is cylindrical with coordinates
χ, φ, with χ ≡ (

√
2mµ/�)r. Equation (7.1) is clearly the generating equation

of a Bessel function, modified by the nonlinear term η3
q .

In infinitely extended repulsive condensates, the solutions to (7.2) include
the uniform ground state, singly and multiply-quantized vortices, and ring
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Fig. 7.2. A quantum vortex of winding number q = 1 in free space: (a) attractive
case; (b) repulsive case. It is evident in (a) that a bright vortex is also a bright ring
soliton. A radially excited state: (c) the first excited state in the attractive case; (d)
in the repulsive case, a radially excited state requires an infinite number of nodes
and asymptotically resembles the Coulomb function [33]. The radial dependence of
the order parameter of an infinitely extended condensate is depicted. Note that all
axes are dimensionless: η1 is a rescaled radial density while χ is a rescaled radial
coordinate

soliton solutions, as illustrated in Fig. 7.2b,d. The latter require a countably
infinite number of nested dark ring solitons, where each soliton is a radial node
corresponding to a node of the nonlinear Bessel function. The asymptotic form
of these solutions has been studied in [33].

In contrast, in harmonically trapped condensates, ring solitons can be
added to a solution one by one, so that there is a denumerably infinite set
of ring soliton solutions for fixed nonlinearity. The linear stability analysis of
these solutions and subsequent nonlinear dynamics of their breakup has been
studied via the BDGE and GPE in the context of both BECs [33–35] and
optics [36–41]. The dominant decay modes of single ring solitons in harmon-
ically trapped BECs with and without a central vortex of winding number
unity are the quadrupole and octupole, respectively [33]. In general, instabili-
ties in higher dimensions can lead to new nonlinear structures; in Refs. [34] it
is shown that ring solitons decay into vortex necklaces, as was later observed in
optics experiments [42]. References [34,35] also provide an analytical descrip-
tion of ring dark soliton dynamics in BECs. It has been suggested that, by use
of an optical phase-shifting technique such as that employed in creating planar
solitons [25,26,43], one might be able to generate ring solitons in experiments
on BECs and observe their subsequent dynamics.
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We note that structures similar to those of the stationary spherical shell
solitons have been observed as transients in an experiment by Ginsberg
et al. [44] and in simulated collisions of vortex rings [45] as will be discussed
in Sect. 7.2.3 and Chap. 8.

7.2.3 Solitary Waves in Restricted Geometries

When a condensate is confined to a strongly prolate harmonic trap such that
its transverse dimensions are not so small as to approach the healing length
but not so large as to be effectively three-dimensional, new families of solitary
waves arise. It suffices to consider the case ωz = 0, ωr �= 0, so that the con-
densate forms an infinitely long cylinder. Physically, one can loosely interpret
this as a multi-mode waveguide, where a uniform condensate forms the “vac-
uum” and solitary waves can propagate in the z direction. In this picture, one
maintains a finite linear particle density n1 = N/L, counting the number of
particles per unit length along the symmetry axis z.

A mathematical representation of this geometry is realized by the GPE in
the following dimensionless form:

i
∂Ψ

∂t
= −1

2
∇2Ψ +

1
2
r2 Ψ + 4πγ |Ψ |2Ψ, (7.3)

where r =
√
x2 + y2 is the radial coordinate and ∇2 = ∂2/∂x2 + ∂2/∂y2 +

∂2/∂z2 is the Laplacian operator [46]. The dimensionless coupling constant
γ ≡ n1a is the only parameter entering the equation, where a is the scattering
length. Length is measured in units of the transverse oscillator length �r and
the unit of time is 1/ωr. At z → ±∞ the wave function approaches the ground
state in the transverse plane with ∂Ψ/∂z = 0 and a transverse normalization
of 2π

∫
dr r|Ψ |2 = 1.

The parameter γ characterizes the dimensionality of the problem (see
Sect. 3 in Chap. 1 for more details on this reduction). In fact, γ is closely
related to the number of healing lengths that fit into the transverse diameter
of the cylindrical BEC cloud. Consequently, γ � 1 corresponds to the one-
dimensional regime, where the transverse profile of the density is Gaussian and
the waveguide is single-mode. In this regime, the only solitary waves known
are the familiar family of dark solitons from the one-dimensional NLS. Three-
dimensional aspects only become relevant when we consider effects that are
sensitive to the breaking of integrability in the system as it has been found,
e.g., in the interactions of phonons with solitons [47]. For γ 
 1, the conden-
sate enters the Thomas–Fermi regime for which the transverse density profile
is approximated by an inverted parabola (cf. Sect. 4 in Chap. 1). In this regime
various families of solitary waves with different structures co-exist. Figure 7.3
shows a schematic of possible configurations.

Families of cylindrically symmetric solitary waves have been numeri-
cally characterized by Komineas and Papanicolaou [22, 46, 49] and consist
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Fig. 7.3. Schematic of solitary wave configurations in a cylindrical BEC. The band
soliton (S) has a nodal plane perpendicular to the trap axis and shows axial and
inversion symmetry. The vortex ring (VR) is axisymmetric and has a vortex line (line
singularity in the phase) in the configuration of a closed ring around the trap axis.
The double vortex ring (DVR) has the same symmetries as the VR but features
two concentric loops of vortex lines. The solitonic vortex (SV) has no symmetry.
A vortex line is configured perpendicular to the trap axis and does not close in itself
but terminates at the condensate boundaries

of dark solitons, vortex rings and double rings (see Fig. 7.3). The only non-
axisymmetric solitary wave discovered so far is the solitonic vortex, or svor-
tex [7], which consists of a vortex line perpendicular to the cylinder axis. This
nonlinear excitation has solitonic properties in that it is a stable solitary wave
which propagates coherently, and can be generated by stirring in toroidal traps
or by spontaneous decay from an unstable band soliton [7, 8]. The dispersion
relation of the svortex was calculated for a cylindrical geometry in [48], as
shown in Fig. 7.4 (reproduced with permission of the authors [48]).

The picture that emerges from the numerical calculations is the following.
For γ < 1.5 the situation is quasi-one-dimensional and only one solitary wave
with the essential properties and structure of the 1D dark soliton exists. For
γ > 1.5 there is a bifurcation and the non-axisymmetric svortex excitation
coexists with axisymmetric solitary waves, i.e., band solitons. For γ > 4,
there is another bifurcation and vortex rings coexist with band solitons and
svortices. For even larger γ more bifurcations can be expected leading to
a “zoo” of solitary waves. Numerical calculations up to γ = 20 have been
performed in [48, 49]. The stability properties of these families of solitary
waves have not been studied in detail, although svortices and vortex rings are
believed to be dynamically stable.

The stability of vortex rings in particular has been tested numerically
by simulating head-on collisions [45], as shown in Fig. 7.5. It was found that
vortex rings collide elastically at large and small velocities while dramatically
violent collisions occur at intermediate velocities. While these results could be
explained in terms of the known dispersion diagrams like Fig. 7.4, a peculiar
observation from the simulations was that inelastic collisions can generate
shell structures of nearly spherical symmetry reminiscent of the spherical shell
solitons discussed in Sect. 7.2.2. Similar structures were also observed in the
experiment of [44], which will be discussed in more detail in Chap. 8.
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Fig. 7.4. The energy E versus impulse Q dispersion relation of the known solitary
waves in the cylindrical BEC at γ = 7 from [48]. Shown are the branches of the
svortex (SV), vortex rings (VR), and the band soliton (S). The slope dE/dQ of the
dispersion relation gives the velocity of the solitary wave. The density structure of
vortex rings and the time-dynamics of their head-on collision is shown in Fig. 7.5

Fig. 7.5. Inelastic collision of vortex rings produces a transient shell structure of
near spherical symmetry, from [45]. Plotted is the density |Ψ |2 on the y = 0 plane
at different time frames showing the head-on collision of a pair of vortex rings at
γ = 7 with v ≡ dE/dQ = 0.34vs, where vs = 1.61 is the speed of sound in the units
of (7.3)

7.2.4 Vortex Rings and Rarefaction Pulses

We now turn to the discussion of solitary waves that are localized on a
significantly smaller scale than the condensate dimensions. In this case the
idealization to a homogeneous condensate is appropriate, and the local den-
sity approximation can be applied to obtain non-uniform results. In fact,
most of the work done in this direction assumes an infinite and homogeneous
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Fig. 7.6. Dispersion relation [11, 51] for 2D (x, z) solitary waves (solid line). The
dashed line shows the dispersion relation of sound for comparison

background density. The ground-breaking work in this area was done in the
1980s by Jones and Roberts, who computed the dispersion relation of 2D and
3D solitary waves [11], as reproduced in Fig. 7.6 [51]. In three dimensions, the
solitary waves they found are a family of vortex rings with varying diameter,
which is related to the energy, the impulse, and the velocity. As the diameter
is decreased to the order of the healing length, the phase singularity disap-
pears; nevertheless, a branch of solitary waves can be found. As these waves
have reduced particle density in the region where they are localized, they
are also called rarefaction pulses. Analytical formulas in the form of Padé
approximants for 3D solitary waves are given in [52].

The stability of the Jones–Roberts solitons was first discussed in [53], but
rigorous results were only obtained recently [50, 54]. It is interesting to note
that simulations showed that head-on collisions of vortex rings are always
highly inelastic [55], in contrast to the situation in cylindrical traps discussed
above. There has also been some work on the interactions between 3D solitons,
vortex lines, and phonon radiation in the context of superfluid turbulence
[50, 56]. Recent work in a hydrodynamic framework hints that the properties
of vortex rings can be dramatically modified by Kelvin-wave excitations to the
extent that the vortex rings may change their direction of propagation [57].

Another specific sort of multidimensional soliton is a solitary wave moving
along a vortex line that extends through a homogeneous condensate. Such
excitations were discussed recently in [58].

7.2.5 Multi-Component Bose–Einstein Condensates

Multi-component condensates offer rich opportunities for the study of soli-
tonic and solitary waves in higher dimensions. A great deal of work has been
done in this area. We touch very briefly on this subject. The main idea



7 Multidimensional Solitons: Theory 143

behind topological solitons in multi-component BECs is as follows. Repul-
sive inter-species and intra-species interactions in a multi-component BEC
will tend to make the total particle density uniform by filling up low-density
regions of vortex cores with particles from another component. Under the
assumption of a uniform total density, the vectorial order parameter has a
prescribed constant length and becomes a mapping of three-dimensional real
space to a sphere. Topological solitons are found as solutions with nontrivial
topology resulting from this mapping. Examples of topological solitons are
skyrmions in three dimensions and baby-skyrmions in two dimensions. A very
large number of different vortex textures are possible in multi-component
BECs [15, 59–61], Various suggestions have been made to observe skyrmions
and other such objects in BECs, but none have been achieved so far in exper-
iments [62–69]. There is an ongoing discussion about the potential stability
and experimental observability of such solutions [70]. In the case of dipolar
BECs where long-range interactions play a role in addition to the contact
interaction considered so far, spin textures may form spontaneously and the
stability conditions change [71].

We would also like to mention that a generalization of the Jones–Roberts
solitons to two-component condensates with a variety of different solitary wave
families is described in [72]. Nonlinear phenomena in multi-component BECs
are discussed in more detail in Part IX.

7.3 Bright Solitons in Higher Dimensions

While dark solitons are excitations of a condensate that take the form of den-
sity notches, bright solitons are ground or metastable states of a condensate,
even in higher dimensions. Thus an attractive BEC is itself a soliton. Most
experiments have focused on the unstable regimes of bright solitons [73–75];
we will also discuss the many theoretical proposals based on stable regimes,
which are only just beginning to be explored in experiments [76–78].

7.3.1 Instability, Metastability, Stability

Bright soliton solutions to the GPE with a constant external potential
V (r) = V0 are unstable to collapse in three dimensions. In one dimension
bright solitons are stable. In two dimensions they either collapse or expand
indefinitely, depending on the initial conditions and the strength of the effec-
tive nonlinear coefficient. The precise balance between expansion and collapse
is known as the Townes soliton, or Townes profile [80, 81]. These now stan-
dard results for a constant potential in one, two, and three dimensions are
presented rigorously in Sulem and Sulem [1]. However, with the addition of
an external harmonic trapping potential, metastability can be achieved in
three dimensions. This is easy to see by considering the scaling of the three
energy terms in the GPE. The kinetic energy scales as 1/R2, where R is the
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Fig. 7.7. Metastability and macroscopic quantum tunneling: Shown is a representa-
tive energy surface for a variational Gaussian ansatz in an isotropic 3D harmonic trap
for attractive interactions geff < 0, as a function of the single variational parameter,
the width of the Gaussian. One observes that non-singular solutions (non-zero width)
are always metastable. The height of the collapse barrier decreases as N → Nc; Nc is
the critical number of atoms for which the barrier disappears and collapse is driven
classically. Macroscopic quantum tunneling towards collapse can also occur through
the barrier, as sketched on the plot [79]

radius of a single bright soliton. The mean-field energy scales as −1/R3, since
the wavefunction is proportional to R−3/2. The potential energy scales as
R2. Thus the additional contribution of the potential leads to a metastable
region.

In Fig. 7.7 is shown a simple variational study for the energy surface in the
isotropic case, with R taken as a variational parameter for a Gaussian varia-
tional ansatz [82–88]. Since the state shown in Fig. 7.7 is metastable, quantum
tunneling can cause the solution to tunnel through the barrier towards R = 0,
i.e., collapse. Ueda and Leggett [79] derived an expression for the tunneling
exponent based on a Gaussian variational ansatz:

SB

�
� 4.58N

(
1 − N

Nc

)5/4

(7.4)

where the tunneling rate is given by Γ = A exp(−SB/�) and Nc is the critical
number of atoms past which the condensate loses metastability and becomes
unstable to collapse. This is one of many instances in which macroscopic
quantum tunneling manifests in BECs, even within the mean-field descrip-
tion [87,89–91]. One must also make careful estimates of thermal fluctuations,
which can push the condensate up over the variational barrier. A simple esti-
mate can be made by requiring that the thermal energy kBT be much less
than the difference between the energy of the metastable state and that of the
barrier peak, as sketched in Fig 7.7.
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The tunneling barrier becomes large for condensates in prolate traps with
λ� 1. The soliton then deforms from a spherical shape to an elongated shape.
This is a simple experimental signature of the effective dimensionality of the
soliton. For oblate traps, i.e., λ 
 1, the soliton becomes two dimensional.
Then the condensate is either stable or unstable [86] within the radial degrees
of freedom. For sufficiently large |geff | the condensate collapses; for smaller
|geff | its expansion is prevented by the external harmonic potential. The effect
of the asymmetry λ has been studied both variationally and via numerical
solution of the GPE [86,87,92].

However, condensates in trapped BECs are always mathematically meta-
stable to three-dimensional collapse, whether the effective dimensionality be
one-, two-, or three-dimensional, due to quantum tunneling. It is simply that
the tunneling time associated with three-dimensional collapse becomes expo-
nentially long; indeed, it is so much longer than experimental lifetimes of
1–100 s that it can be ignored. BEC experiments are rife with such metasta-
bilities; for instance, the ground state of the kinds of alkali metal gases used
to make BECs is in fact a crystalline solid, and the atomic gas is only in
a metastable state, albeit long-lived. In practice, we ignore all metastabili-
ties not relevant to the time scale of measurements, and assign an effective
dimensionality to the GPE to describe bright soliton properties.

Ignoring macroscopic quantum tunneling, the threshold for bright soliton
collapse can be determined by variational ansatz from the mean-field theory.
This has an analytical expression in two special cases, both of interest for
BECs. For an isotropic or nearly isotropic condensate [5,82,83,86], the critical
number of atoms is

Nc = 0.6501
�̄

|a| , (7.5)

where �̄ ≡ (�2r�z)
1/3 is the geometric mean of the harmonic oscillator lengths.

For a condensate which is confined only in the radial direction, Nc =
0.7598 �r/|a| [87]. This case is especially interesting as it corresponds to the
propagation of a bright soliton in a waveguide. Since bright solitons are them-
selves BECs which self-cool to zero temperature [87], they have been suggested
as carriers of information in atom circuits on a chip. We note that numerical
studies of the GPE show that the actual critical number is shifted by 10–20%
as compared to the variational result; this can be incorporated by simply
shifting the constant prefactor.

Lastly, although we have focused on the mean-field and its linear per-
turbations as described by the GPE and BDGE, this picture is inadequate
for describing the dynamics of attractive BECs past the collapse threshold.
The essential reason is that the density becomes so large that

√
n|a|3 ∼ 1,

where n is the number density and a the scattering length. The mean-field
theory, which relies on a diluteness approximation [5, 6], necessarily breaks
down at this point. Nevertheless, a number of attempts have been made
to describe collapse dynamics with mean field theories. For instance, some
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authors have modified the GPE by adding an effective loss rate due to
three-body recombination [84,93,94]. Other authors have considered a gener-
alized time-dependent Hartree–Fock–Bogoliubov (HFB) theory which couples
the mean atomic field to a mean molecular field as well as normal and anoma-
lous atomic quantum fluctuations [95,96]. A recent extensive study of Wüster
et al. [97] has focused on reproducing the time of onset of collapse found in
the experiment of [75] comparing simulations using the GPE, HFB, and the
stochastic truncated Wigner approximation method for including the effects
of quantum fluctuations. The conclusion of this study was that the effect of
quantum fluctuations, as compared to GPE simulations, was small and could
not explain the discrepancies between the time scales found in the simulations
and the significantly faster collapse times seen in the experiment.

7.3.2 Bright Soliton Engineering: Pulsed Atom Lasers
and Other Applications

An area that has only begun to be explored experimentally is the many
regimes in which bright solitons are stable. As pointed out in Sect. 7.3.1,
bright solitons are always metastable in Bose–Einstein condensates, due to
the geometries in which they are made. However, the instability times due to
quantum tunneling can be much longer than the lifetime of experiments. All
of the “stable” applications of BECs which are discussed in Sections 7.3.2–
7.3.5 are therefore technically unstable; however, we use the term experimental
stability to emphasize that from the point of view of measurement they are
stable.

In one of the first experimental demonstrations of a bright soliton, a train
of nearly 3D bright solitons was created from an elongated BEC via modu-
lational instability [77], as described in Chap. 2. On the other hand, another
experiment published simultaneously [87] produced a single bright soliton with
a weakly expulsive harmonic potential in the z direction, i.e., a harmonic trap
turned upside down; the radial harmonic trap was kept quite strong, so that
the soliton propagated down a waveguide. The expulsive potential was then
used to push the soliton along and accelerate its dynamics. A combination of
these two experimental techniques leads to a pulsed atom soliton laser as fol-
lows [98]. The large repulsive scattering length of an initially highly elongated
BEC is suddenly tuned small and negative with a Feshbach resonance. At the
same time, the trap is flipped over in the z direction, i.e., ωz → iωz. The
subsequent nonlinear evolution of the wavefunction creates a series of pulses
via modulational instability seeded by linear interference fringes according
to the Feynman propagator [99]. These self-cooling “mini-BECs” each con-
tain on the order of 103 to 104 atoms. They are prevented from overlapping,
and thereby collapsing, by the expulsive potential, and maintain their phase
coherence over 500 ms. This sequence of events is illustrated in Fig. 7.8.

Improvements on this design have since been suggested in which many
more laser pulses can be produced from a better controlled reservoir. In [100],
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Fig. 7.8. Pulsed atom soliton laser: An initial state created by changing the scatter-
ing length of a condensate from large and positive to small and negative and then
projecting the condensate on to an expulsive harmonic potential results in spon-
taneous modulational instability and a series of phase-coherent pulses, or “mini-
BECs.” Shown are the evolution of the density and phase along a two dimensional
cut at y = 0. A set of well-defined solitonic pulses is evident in the latest (top)
panel. The strong variations in the phase at late times is due to the high momentum
of the solitons caused by the expulsive harmonic potential. Note that the phase is
shown on the color circle, i.e., modulo 2π, while the density is in arbitrary relative
units rescaled for each plot. For N = 104 atoms, a = −3a0, and a trap geometry of
ωρ = 2π × 2.44 kHz, ωz = 2πi × 2.26 Hz, the time units are scaled to 22 ms and the
spatial units to 10 µm. Note that the aspect ratio of the plots showing a region of
0.822 by 153 length units was changed for visualization

a dual-core approach is used to produce a matter-wave soliton laser from
attractive BECs. Two elongated quasi-one-dimensional condensates, or “cores”
are laid side by side. The first condensate serves as a reservoir for the second
via macroscopic quantum tunneling. The scattering length is small and pos-
itive in the first condensate, and small and negative in the second. Bright
solitons form in the second condensate, and are emitted through a semi-
transparent barrier at one end.

Carpentier and Michinel [101] investigate this idea in much greater detail
by considering many possible spatial variations of the scattering length to
maximize output and control over pulse size and velocity. In a second paper,
they use a similar idea to create a bright soliton accelerator in a ring-shaped
trap, similar to the “nevatron” already realized experimentally with repulsive
BECs [102], but with many advantages over the first demonstration [103].
A temporal variation of the scattering length has also been used to engineer
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bright solitons. For instance, a bright soliton in free three-dimensional space
can be stabilized by rapidly oscillating the scattering length from positive to
negative [104–107].

We would like to point out that even though the “engineering” examples we
have cited in this section do not take advantage of the principles of quantum
mechanical superposition or entanglement, nevertheless the nonlinear effects
which are key to their operation result from averaging over a quantum many
body wavefunction. Moreover, quantum fluctuations must be considered in
any serious attempt at designing a pulsed atom laser and other such devices.
Therefore, they can be considered as examples of quantum engineering.

7.3.3 Solitons in a Thermal Bath

The study of thermal effects on bright matter-wave solitons is highly rele-
vant in light of potential applications of solitons, and has just begun to be
explored. The multidimensional aspects of bright solitons in a BEC are very
important in this context. The microscopic interactions between solitons and
independent thermal particles are described by the BDGE to lowest order in
1/N , where N is the number of particles in the soliton. In one dimension the
scattering problem of a single-particle with a soliton can be solved exactly in
the BDGE [108] and the full quantum field theory [109]. It is found that the
scattering of thermal particles on the soliton is reflectionless, i.e., the trans-
mission coefficient is unity, which is a consequence of the integrable nature of
the nonlinear Schrödinger (NLS) equation. This is a very useful property for
possible applications of bright solitons in high-precision interferometry.

However, the extent into transverse dimensions that solitons have in a
waveguide geometry breaks the integrability of the NLS equation and allows
for a finite reflection probability of scattering thermal particles. During such
reflection events, momentum is transferred from the thermal particle to the
soliton, which affects the soliton’s center-of-mass motion. Therefore, a soliton
immersed in a thermal cloud can experience diffusive motion or be subject
to a frictional force when it is moving with a relative velocity to the back-
ground. In [108], the friction and diffusion coefficients were determined based
on a calculation of the reflection probability of thermal particles scattering
off a soliton. Other approaches to describing the interaction based on the
Hartree–Fock–Bogoliubov formalism can potentially treat the nonlinear cou-
pled dynamics of the thermal cloud and the BEC. Studies in this direction
are reported in [110,111].

7.3.4 Soliton–Soliton Interactions

Soliton–soliton interactions in one dimension have been described completely
and analytically by Gordon [112]. They are perfectly elastic. However, new fea-
tures arise in trapped BECs. The imposition of a trapping potential can lead
to chaotic dynamics for three or more solitons, even in one dimension [113].
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Higher-dimensional effects can lead to inelastic collisions [98, 114, 115]. The
subject of collisions of bright solitons in trapped BECs is only just beginning
to be studied.

The essential effects of higher dimensionality are as follows. When two
identical bright solitons overlap they double their number of atoms N . Thus
it is possible for N to be temporarily greater than Nc, as defined in (7.5).
The time for collapse to occur can be estimated from geff . Elasticity is then
a question of whether or not the two solitons spend enough time overlapping
to undergo collapse or partial collapse, at least within the mean-field picture
of the GPE. This is determined by their relative velocity [114]. An additional
factor is their relative phase and amplitude. In one dimension, a relative ampli-
tude difference is equivalent to a phase difference [112]. If the phase difference
∆φ satisfies π/2 ≤ ∆φ ≤ 3π/2 then the solitons can never overlap. On the
other hand, if their phase difference satisfies −π/2 < ∆φ < π/2, then par-
tial overlap occurs, with full overlap for ∆φ = 0 [116]. Initial studies indicate
that the situation is vastly more complex in higher dimensions. For example,
bright solitons can collide so inelastically that they “stick,” releasing excess
energy and relative momentum by emitting a few particles, similar to the way
that a soliton in one dimension adjusts to its preferred shape and thereby
self-cools [87,117].

It has been suggested, based on initial experiments on bright soliton trains,
that bright soliton collisions can in fact lead to annihilation [77]. Beyond the
mean-field theory, it is known experimentally that there is a bounce from col-
lapse, as described in Sect. 7.3.1. Consider two solitons in a soliton train, each
with a number of atoms near the critical number and therefore nearly three
dimensional. The harmonic trap and/or initial conditions can drive them to
overlap. If they do so for a sufficient period of time partial collapse occurs,
leaving one soliton behind. The loss of atoms is not properly described by
the mean-field theory. Even if the solitons are initially arranged with nodes
between them, drift of relative phase due to quantum fluctuations can even-
tually lead to their being able to overlap. This is one explanation of the
occasional disappearance of a member of the soliton trains of [77].

Therefore, in addition to the exploration of bright soliton collisions within
the three-dimensional mean-field theory of the GPE, the effects of finite tem-
perature [27] and higher order quantum theories [95] need to be considered
as well in order to model experimental dynamics. The mean-field theory can
only provide, at best, the threshold for collapse-related effects. This remains
an important open problem for theorists to address.

7.3.5 Bright Ring Solitons and Quantum Vortices

The attractive analog of a vortex in a repulsive BEC in free space is in fact a
bright ring soliton [118]. This point is illustrated in Fig. 7.2, where it can be
seen that the wavefunction approaches zero as r → ∞, in contradistinction
to vortices in repulsive BECs where the wavefunction approaches a non-zero



150 L.D. Carr and J. Brand

constant. The stability of vortices in attractive BECs has been investigated
theoretically [82,83,119,120] since shortly after the experimental observation
of a BEC. However, no experiment to date has tested theoretical predictions
of bright ring solitons.

Static studies, which consider stationary solutions of the GPE and their
linear perturbations as described by the BDGE, have found that all bright
ring solitons and their radial excitations are unstable [118,120]. Initial studies
predicted an enhanced critical number over a bright soliton, and therefore
enhanced stability. However, these studies considered only radial collapse.
In fact, bright ring solitons are azimuthally unstable, as later analysis with
the BDGE showed [120]. Although we have avoided significant analytical
description thus far in this review, it is useful to state the form of the
BDGE for a centrally located axisymmetric vortex [121] in an effectively two-
dimensional condensate. We first transform the Bogoliubov amplitudes u and
v according to (

u(r)
v(r)

)
=

eimφ

�r

(
eiqφ ũm(r̃)
e−iqφ ṽm(r̃)

)
, (7.6)

where r̃ =
√
x2 + y2/�r and we neglect perturbations in the z direction, con-

sidering only a strongly oblate trap for simplicity. Equation 7.6) represents a
partial wave of angular momentum m relative to a condensate with a vortex
of winding number q. Then in harmonic oscillator units the BDGE become

L+ũm − g̃eff |f̃q|2ṽm =
Ωm

ω
ũm, (7.7)

L−ṽm − g̃eff |f̃q|2ũm = −Ωm

ω
ṽm, (7.8)

where

L± ≡ −1
2

(
∂2

∂r̃2
+

1
r̃

∂

∂r̃
− (q ±m)2

r̃2
− r̃2

)
+ 2g̃eff |f̃m|2 − µ̃ (7.9)

Here Ωm are the eigenvalues for Bogoliubov modes with angular momentumm
and f̃q is the radial portion of condensate wavefunction with winding number
q; the tildes throughout these rescaled BDGE indicate harmonic oscillator
units. The different centrifugal barriers inherent in L± show that the two
amplitudes behave differently near the origin, with ũm ∝ r̃|m+q| and ṽm ∝
r̃|m−q| as r̃ → 0. Note that f̃q is normalized to unity.

We briefly highlight the results of studies of (7.7)–(7.8) for g̃eff < 0. The
dominant instability mode is quadrupolar for m = 1, a single bright soliton,
and small g̃eff . The linear instability time is given by Tm = 2π/Im(Ωm). This
time can be much longer than experiments, so that bright ring solitons do
indeed have the possibility of being observed.

While multiple dark ring solitons consist of nested nodal rings, separated
by regions of nonzero density and constant phase, multiple bright ring solitons
consist of multiple rings of non-zero density and constant phase separated by
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nodes. These multiple bright ring soliton solutions are in fact radial excitations
of a vortex in an attractive BEC. In free space, there is a denumerably infinite
number of such states, which form an excited state spectrum of bright ring
solitons in two dimensions for fixed winding number under the constraint that
the wavefunction approach zero as the radial coordinate approaches infinity.
This result has been formally proved for winding number zero for the Townes
soliton [1] and numerically demonstrated for non-zero winding number [118].
The first excited state for winding number m = 1 is shown in Fig. 7.2c. This
is in contrast to dark ring solitons, which only appear in an infinite number
of concentric rings in free space, as shown in Fig. 7.2d.

It is has been shown that a similar sequence of radially excited states of
attractive vortices occurs in a harmonic trap, and that, for sufficiently small
g̃eff , their instability times can be long compared to experiments [118].

Nonlinear dynamical studies of trapped bright ring solitons have found
cyclical behavior in their azimuthal break-up, among other intriguing behav-
iors [122, 123]. Figure 7.9 shows one example of this cyclical behavior. The
initial state is a bright ring soliton plus a small symmetry-breaking azimuthal
perturbation. The ring splits via the quadrupole instability into two density
peaks, i.e., two bright solitons. The soliton pair rotates around the origin, then
recombines to reform the original ring. Panels g and h suggest the possibility
of observation by sudden switching of the scattering length and expansion

Fig. 7.9. Nonlinear dynamical split-merge cycle of bright ring soliton. (a)–(f) Shown
is the time evolution of the density profile in two dimensions. The insets present gray-
scale plots of the phase modulo 2π. Panels (g) and (h) show what occurs when the
trap is switched off and the condensate is allowed to expand with (g) large positive
scattering length and (h) zero scattering length. This is a common experimental
technique to magnify condensate features too small to otherwise resolve. Reproduced
with permission of the authors [122]



152 L.D. Carr and J. Brand

of the condensate, a common experimental technique. We note that parallels
have been suggested in multi-component BECs as well [124].

Finally, it is worth mentioning that the stabilization of higher dimensional
solitons by means of optical lattices (cf. Parts IV and VIII) has also been
proposed in [125–128].

7.4 Summary and Acknowledgments

We have described a few of the many manifestations of soliton-like phenom-
ena in Bose–Einstein condensates in two and three dimensions. A brief list for
repulsive nonlinearity includes dark band solitons, dark planar solitons, dark
ring solitons, spherical shell solitons, families of solitary waves, and skyrmions
and vortex textures; while for attractive nonlinearity one finds metastable
bright solitons, quantum tunneling and quantum evaporation of bright soli-
tons, pulsed atom soliton lasers, bright ring solitons, and the split-merge cycle.
We think some of the most exciting outstanding problems in this field are the
higher order quantum and thermal effects on solitonic phenomena, as we have
indicated sporadically throughout our discussion.

There is great deal both in and beyond our over one hundred references
that we have been unable to cover in the space allotted; we sincerely hope we
have not offended the many investigators whose work we have not been able
to include.

The authors would like to thank the editors of this book, who have done
a wonderful job facilitating a much-needed review of nonlinear phenomena
in BECs. We thank our mentor William Reinhardt, who many years ago led
us both in the direction of solitons and BECs as a graduate student and
post-doctoral fellow, respectively. LDC thanks Charles Clark for many useful
discussions and scientific collaborations which led to writing this chapter.
LDC gratefully acknowledges the National Science Foundation for continuing
support.
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86. V.M. Pérez-Garćıa, H. Michinel, J.I. Cirac, M. Lewenstein, P. Zoller, Phys.

Rev. A 56, 1424 (1997)
87. L.D. Carr, Y. Castin, Phys. Rev. A 66, 063602 (2002)
88. B.A. Malomed, Progr. Optics 43, 71 (2002)
89. N. Moiseyev, L.D. Carr, B.A. Malomed, Y.B. Band, J. Phys. B 37, L1 (2004)
90. L.D. Carr, M.J. Holland, B.A. Malomed, J. Phys. B 38, 3217 (2005)
91. N. Moiseyev, L.S. Cederbaum, Phys. Rev. A 72, 033605 (2005)
92. A. Gammal, T. Frederico, L. Tomio, Phys. Rev. A 64, 055602 (2001)
93. H. Saito, M. Ueda, Phys. Rev. A 65, 033624 (2002)
94. K. Gawryluk, M. Brewczyk, M. Gajda, J. Mostowski, Phys. Rev. B 39, L1

(2006)
95. J.N. Milstein, C. Menotti, M.J. Holland, New J. Phys. 5, 52 (2003)
96. S. Wuster, J.J. Hope, C.M. Savage, Phys. Rev. A 71, 033604 (2005)
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