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A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii
equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs
due to medium effects and the trapping potential, e.g., in quasi-1D or quasi-2D systems. It is shown that a
simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the
condensate and a two-body wave function describing the behavior of a pair of bosons in the Bose-Einstein
condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme
that admit analytical estimations are considered and compared to the literature. In addition to the well-known
cases of low-dimensional trapping, crossover regimes can be studied. The values of the kinetic, interaction,
external, and release energies in low dimensions are also evaluated and contributions due to short-range
correlations are found to be substantial.
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I. INTRODUCTION

The Gross-Pitaevskii(GP) equation[1] is a powerful tool
for describing most of the physical properties of Bose-
Einstein condensates of trapped alkali atoms(see reviews
[2–5]). In the GP approach, the ground state energy of a
trapped dilute Bose gas of atoms of massm is the functional

E =E drF "2

2m
u ¹ fu2 + Vextsr dufu2 +

g

2
ufu4G , s1d

of the order parameterf=fsr d=kĈsr dl, whereĈsr d is the
bosonic field operator andVextsr d is an external trapping po-
tential. The coupling constantg in the GP functional(1) is
intimately related to the density expansion of the energy of
the homogeneous Bose gas. Indeed, in the homogeneous
case Eq.(1) yields E/N=gn/2 wheren=N/V.ufu2 is the
3D density. This expression should be equal to the known
first term in the density expansionE/N=2p"2an/m in three
dimensions[6,7]. With a being the 3D scattering length, the
coupling constantg=4p"2a/m coincides with the zero mo-
mentum limit of the scattering amplitude, the two-body
T-matrix, for two particles scattering in a vacuum. This stan-
dard approach based on the low-density expansion of the
homogeneous gas neglects the influence of inhomogeneous
trapping potentials which may require a renormalization of
the coupling constant.

The situation is more complicated for two dimensional
Bose gases, which can be regarded as the limiting case of a
3D gas with a highly inhomogeneous trapping potential. Ko-
lomeiskyet al. [8] proposed that the form(1) of the energy
functional is still valid. However, in this case the coupling
constant becomes dependent on the local density. Indeed,
Schick’s result for the energy E/N=2p"2n2D/ f
−m lnsn2Da2D

2 dg of a dilute 2D Bose gas[9] leads to the cou-
pling constantg=4p"2/ s−m lnufu2a2D

2 d [8] and further cor-
rections were derived in Refs.[10–13]. Here, n2D and a2D
denote the two-dimensional density and scattering length, re-

spectively. This generalization can be understood as a local
density approximation, which yields consistent energy values
in the homogeneous and inhomogeneous cases but does not
reveal the nature of the additional nonlinearity in the GP
equation. Moreover, it is not clear what the nonlinearity
should be in the crossover regimes from 2D to 3D and from
1D to 3D. A mathematically rigorous justification of the GP
functional[14] is of importance but hardly can help us in this
situation.

The purpose of the present paper is to show how a
density-dependent renormalized coupling constant emerges
naturally in a simplified Hartree-Fock-Bogoliubov(HFB) ap-
proximation starting from the bare interaction potentialVsrd.
To this end, we derive generalized GP equations where the
order parameter is coupled to the pair wave function of two
bosons in the condensate. The latter has already been dis-
cussed in detail in Refs.[13,15–17]. The generalized GP
equations permit us to consider interaction potentials with a
hard core directly without thed-function replacement by ac-
curately accounting for the short-range spatial correlations of
the particles. These correlations become essential in low di-
mensions since the Born approximation for two scattering
particles fails at small momenta(see, e.g., Ref.[19], Sec.
45). We note that the correct treatment of the short-range
correlations is also possible within the Jastrow[20] and the
Faddeev-Yakubovsky[21] approaches.

It is well known that the original HFB scheme leads to an
artificial gap in the spectrum[22,23]. Moreover, this scheme
in conjunction with thed-function replacement has an ultra-
violet divergence[7,24]. These problems then have to be
cured by further approximations as classified by Griffin[25].
Alternatively, complicated renormalization procedures
[26,27] or pseudopotentials[28,29] have been suggested. In
this paper we will discuss a novel approximation derived
from the full HFB scheme where the use of the bare two-
body potential provides an implicit renormalization, and the
ultraviolet divergences are avoided. We will discuss the ex-
citation spectrum and show that it is gapless in a reasonable
approximation.
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Low dimensional Bose systems are not only of general
theoretical interest but also find the attention of current ex-
perimental exploration[30–33]. In these experiments, the
low dimensional condensate is realized by highly anisotropic
3D trapping potentials when the single-particle energy-level
spacing in the tightly confined dimensions exceeds the inter-
action energy between atoms"vr,z*m. Here the frequencies
are associated with the axially symmetric harmonic potential,
andm is the part of the chemical potential coming from the
particle interaction, which is of order of the mean interaction
energy per particle. This criterion takes the formlr,z&j in
terms of the coherence lengthj=" /Îmm [34] and the radial
(axial) harmonic oscillator lengthlr,z=Î" / smvr,zd.

Theoretically, the 2D regimelzkkj , lrllj was investigated
in detail by Petrov, Holzmann, and Shlyapnikov[35]. The
coupling constant was assumed to be theT-matrix of two
particles scattering in the harmonic trap withlr=` at the
energy of relative motionE=2m. An additional nonlinearity
is introduced, since the local value ofm depends on the den-
sity and the coupling constant in a self-consistent way. In this
regime, the motion of particles is confined inz-direction to
zero-point oscillation. This implies that the order parameter
can be represented in the formfsx,y,zd=f0szdfsx,yd,
wheref0szd is the ground state of the 1D harmonic oscillator
andfsx,yd is governed by the two dimensional GP equation
resulting from the functional(1) in two dimensions. So, in
this regime, the behaviour of the condensate inx-y plane is
the same as in the “pure” 2D case with the 2D scattering
length written in terms of the lengthlz of the tight confine-
ment [35].

An improved many bodyT-matrix theory was developed
by Stoof and co-workers[36] in order to describe not only
the homogeneous low-dimensional Bose gases but also the
crossover from 3D to lower dimensions. The coupling con-
stant in the inhomogeneous case is represented by the local
value of theT-matrix, which depends on the local value of
the chemical potential. The localT-matrix approximation
was also used in Ref.[37] and the microscopic approach of
Ref. [38]. Thus, one can say, slightly simplifying the situa-
tion, that the common method of evaluating of the coupling
constant in the above works is to determine first theT-matrix
from the corresponding two-body Schrödinger equation sup-
posing that the motion of the particles is infinite in some
directions, and after that to replace the coupling constant by
the local value of theT-matrix. In this paper we offer a
method beyond the localT-matrix approximation. The cou-
pling constant is determined self-consistently for a given 3D
geometry from a unified variational scheme. As a result, we
obtain a nonlocal term in the energy functional, which can be
of practical importance if the external potential varies on the
scale of the interaction potential. This may be realized, e.g.,
for condensates of loosely-bound molecules in tight or
strongly oscillating potentials like optical lattices. We expect
experiments to enter this regime in the near future as both
atomic condensates in optical lattices[31,39] and molecular
condensates[40–42] are currently under intense experimen-
tal investigation.

As a starting point of our approach we assume that we
have a Bose-Einstein condensate or quasicondensate with a

well-defined order parameter. Long-range fluctuations of the
phase, which become important for many physical properties
in low-dimensional traps[43], are beyond the scope of our
scheme. They can be studied by means of the approaches of
Refs. [35,36,44,45]. Also the strongly-interacting fermion-
ized regime of the Tonks-Girardeau gas[32], which was
studied in Ref.[46], cannot be described with the methods of
this paper. However, we note that our scheme, within its
accuracy, is simple and physically transparent and able to
reproduce not only the value of the coupling constant in 1D
[47] and 2D[35] regimes but also to describe the 3D-2D and
3D-1D crossovers. Furthermore, it allows us to calculate di-
rectly the correct values of the kinetic and interaction ener-
gies of bosons in the trap, which arenot given by the first
and the third terms, respectively, in the GP functional(1)
[48].

The paper is organized as follows. In Sec. II we derive the
generalized GP functional and corresponding equations from
a simplified HFB approximation. In Sec. III, a few specific
cases are considered that admit analytical estimations, in-
cluding the homogeneous and inhomogeneous Bose gases in
low dimensions. In Sec. IV we calculate the values of vari-
ous contributions in the energy. In particular, the release en-
ergy of the low dimensional gases is estimated. In Sec. V we
derive a useful virial theorem and a relation between the
chemical potential and different parts of the energy func-
tional. The eigenfunctions of the two-body density matrix
and a relation between the normal and anomalous averages
are obtained within the HFB approximation in Appendices A
and B, respectively.

II. GENERALIZED GROSS-PITAEVSKII EQUATIONS

A. Failure of standard GP approach

In the standard approach[2–5], the equilibrium value of
the order parameterf is determined by minimization of the
GP functional(1) with the constraint of particle-number con-
servationdsE−m8Nd /df* sr d=0. HereN.N0 is the number
of particles and the chemical potentialm8 appears as a
Lagrange multiplier. Introducing for later conveniencem
=m8−E0 as the chemical potential due to interaction where
E0 is the ground state energy of a noninteracting particle, we
arrive at

sE0 + mdf = −
"2

2m
¹2f + Vextsr df + gufu2f. s2d

The simplicity of this derivation is based on the simple
form of the GP energy functional(1), where the effects of the
binary interparticle interactions has been reduced to a single
parameter given by the coupling constant. In order to deter-
mine the constant self-consistently, it should be examined
carefully how the interaction termsg/2dufu4 appears in the
GP functional(1).

In a general many-body system with binary interactions,
the expectation value of the interaction energy is a functional

of the two-bodydensity matrixkĈ†sx1dĈ†sx2dĈsx28dĈsx18dl.
For a pairwise interaction potentialVsx1,x2d=Vsr 1

−r 2,s1,s2d we thus obtain[19,49]
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Eint =K1

2o
iÞ j

Vsxi,xjdL =
1

2
E dx1dx2Vsx1,x2d

3 kĈ†sx1dĈ†sx2dĈsx2dĈsx1dl, s3d

where x=sr ,sd stands for the coordinate and spin or sort
indices of a particle, respectively, andedx¯ =osedr¯.
The kinetic energy and the energy of interaction with an
external field are determined by the one-body matrix

kĈ†sxdĈsx8dl

Ekin =Ko
i

pi
2

2mL = −
"2

2m
E dxu¹x

2kĈ†sx8dĈsxdlux8=x,

s4d

Eext = Ko
i

VextsxidL =E dxVextsxdkĈ†sxdĈsxdl. s5d

The behavior of the one- and two-body matrices is easy to
understand in the dilute limit, when the condensate depletion
sN−N0d /N is small. We note that the number of bosons in the
condensateN0 is defined as the macroscopic eigenvalue of

the one-body density matrixkĈ†sxdĈsx8dl, that is

edx8kĈ†sx8dĈsxdlf0sx8d=N0f0sxd. The field operator can be
expanded in the complete orthonormal set of eigenfunctions

of the one-body matrixĈsxd= â0f0sxd+on8ânfnsxd, where
the sumon8 meansonÞ0 and edxufnsxdu2=1. Appearance of
the Bose-Einstein condensate implies the macroscopic occu-
pation of N0, i.e., the ratioN0/N remains finite in the ther-
modynamic limit. Following Bogoliubov[6,50] we now re-
place the condensate operators byc-numbersâ0

†= â0.ÎN0

and represent the Bose field operator in the formĈsxd
=fsxd+q̂sxd [51]. Here fsxd=ÎN0f0sxd is the c-number

part, andq̂sxd=on8ânfnsxd the operator part, for which we

havekĈsxdl=fsxd andkq̂sxdl=0. Thus, the order parameter
is nothing else but the non-normalized eigenfunction of the
one-body density matrix.

In the original approach of Gross and Pitaevskii, the sim-
plest mean-field approximation is used when the operator

part is completely neglected:Ĉsxd.fsxd and Ĉ†sxd
.f* sxd. Assuming additionally that the order parameter
does not change significantly at the distances of order of the
radiusRe of the interaction potential, we obtain the GP en-
ergy functional (1) for spinless bosons from Eqs.(3)–(5)
with the coupling constant

g . gB ;E drVsrd. s6d

This coupling constant can be identified with the two-body
scattering amplitude at zero momentum in the Born approxi-
mation. The validity of the GP approach with the coupling
constantgB of Eq. (6) is certainly linked to the validity con-
dition of the Born approximation at zero momentum that the
potentialVsrd be small and integrable.

Of the two assumptions mentioned above, namely the
slow spatial variation of the order parameter and the validity
of the Born approximation, the former is usually fulfilled as
the healing lengthj=" /Îmm as a lower bound of the length
scale of the order parameter[3,4] is usually much larger than
the effective range of the interaction. The latter assumption,
however, is clearly not fulfilled for experiments with cold
atomic gases as their interactions are of the hard-core type.

The validity of the GP approach can be extended to such
systems by an argument attributed to Landau[6,16]. He
noted that at extremely low energies, as predominant in the
dilute-gas BEC, the scattering properties are completely de-
termined by only one single parameter, which is the 3D
s-wave scattering lengtha. This allows us to replace the
Born approximation for the scattering amplitudegB by its
exact valueg=4p"2a/m, which can be found from the two-
body Schrödinger equation even for hard-core potentials.
This indirect argument, however, cannot be used in one or
two dimensions as there is no such simple relation between
the integral in Eq.(6) and the scattering amplitude as we
have in three dimensions. Furthermore the Born series for
the scattering amplitude diverges for small momenta in two
dimensions and below(see, e.g., Ref.[19], Sec. 45).

B. Pair wave function in a medium

The above described deficiencies of the naive GP ap-
proach may be remedied by accounting for the two-particle
scattering processes explicitly. Within the HFB scheme this
is possible through certain correlations introduced by the

fluctuation operatorsq̂. In order to see the relation between
the two-particle scattering process and the correlation func-
tions mentioned above it is useful to introduce the concept of
a two-body orpair wave function in the mediumof other
particles[15,50]. The pair wave functions in the medium of
the many body system are defined as eigenfunctions of the
two-body density matrix, as discussed in detail in Appendix
A. They should be distinguished from the two-body wave
functions in the vacuum, which relate to a system of two
particles. For the latter we will use the superscripts0d.

Let us suppose that we know the exact eigenfunctions of
the two-body density matrix. Then we can expect for the
dilute gas, where low-momentum two-body processes domi-
nate the behavior of the system, that the pair wave functions
in the medium should be very close[15] to the two-body
wave functions in the vacuum, which are the solutions of the
two-body Schrödinger equation. This physical assumption
was used to obtain the density expansions for the 3D[16,17]
and 2D[13] homogeneous Bose gases in a very simple man-
ner. However, various approximations in the many-body
theory can break this relation.

C. A simplified HFB scheme

Within the HFB approximation for the homogeneous
Bose gas, all eigenfunctions of the two-body density matrix
except for one are plane waves and are thus treated in the
Born approximation as shown in Appendix A. This is an
obvious drawback of the HFB scheme. It turns out that the
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two-body wave function that is not a plane wave is propor-
tional to the anomalous average

wsx1,x2d ; kĈsx1dĈsx2dl s7d

and corresponds to the macroscopic eigenvalueN0sN0−1d in
the limit of largeN. It is the pair wave function that describes
the two-particle scattering process in the medium of the
Bose-Einstein condensate[15,52]. Thus we can go beyond
the Born approximation in the framework of the HFB
method by keeping only the contribution of the anomalous

averagekĈsx1dĈsx2dl and neglecting the contribution of the
other wave functions in the two-body density matrix. Due to
small condensate depletionsN−N0d /N!1, one can expect
that the contribution of only this eigenfunction will be suffi-
cient for obtaining the coupling constant in the GP equation.
In this simplified version of the HFB approximation we set

kĈ†sx1dĈ†sx2dĈsx28dĈsx18dl . w * sx1,x2dwsx18,x28d. s8d

Extracting the c-number part of the field operator, the
anomalous averages can be rewritten as

wsx1,x2d = fsx1dfsx2d + csx1,x2d, s9d

where we introduced the notationcsx1,x2d;kq̂sx1dq̂sx2dl
for the anomalous two-boson correlation function associated
with the scattering part of the two-body wave function. The
functionswsx1,x2d and csx1,x2d are symmetric with respect
to permutation ofx1 andx2 due to the commutation relations
for the Bose field operators.

For the one-body density matrix we findkĈ†sxdĈsx8dl
=f* sxdfsx8d+kq̂†sxdq̂sx8dl. We note that the normal

kq̂†sxdq̂sx8dl and anomalouskq̂sxdq̂sx8dl averages are not
independent quantities as discussed in Appendix B and Refs.
[16,17]. Within the Hartree-Fock-Bogoliubov scheme, the re-
lations between them appear as a specific property of the
HFB ground state(the quasiparticle vacuum) and do not con-
tain parameters of the Hamiltonian in explicit form. We will
use the approximate relation(B20), which leads to

kĈ†sxdĈsx8dl = f * sxdfsx8d +E dx2c * sx,x2dcsx2,x8d.

s10d

With the help of Eqs.(8)–(10) we rewrite Eqs.(3)–(5) in
terms of the anomalous averages

Eint =
1

2
E dx1dx2Vsx1,x2duwsx1,x2du2, s11d

Eext =
1

2
E dx1dx2fVextsx1d + Vextsx2dgucsx1,x2du2

+E dx1Vextsx1dufsx1du2, s12d

Ekin =
1

2
E dx1dx2c * sx1,x2dsT̂1 + T̂2dcsx1,x2d

+E dx1f * sx1dT̂1fsx1d, s13d

whereT̂j =−"2¹ j
2/ s2md and j =1,2. Thetotal number of par-

ticles is related directly to the one-body matrix:N

=edxkĈ†sxdĈsxdl. With Eq. (10) we find

N =E dx1ufsx1du2 +E dx1dx2ucsx1,x2du2. s14d

The current approximations are useful for a variational
scheme where the functionsfsx1d and csx1,x2d are deter-
mined by minimization of the total energy with the con-
straint N=const. Using the Lagrange method, we obtain
the conditions dE/dfsx1d=dE/df* sx1d=dE/dcsx1,x2d
=dE/dc* sx1,x2d=0 for the energy functional

Efhf,cj,m8g = Ekin + Eext + Eint − m8sN − Nd, s15d

given by Eqs.(11)–(14). Here m8=m+E0 is the chemical

potential andN=kN̂l is the average number of particles, i.e.,
the left-hand side(LHS) of Eq. (14) at the equilibrium values
of the functionsf and c corresponding to the minimum
(ground state) of the functional(15). Note that the variation
dcsx1,x2d is symmetric under the permutation ofx1 andx2,
so, the equationedx1dx2gsx1,x2ddcsx1,x2d=0 leads to
gsx1,x2d+gsx2,x1d=0 for arbitrary functionsgsx1,x2d.

This variational procedure yields the following system of
equations for the one- and two-body functionsfsx1d and
wsx1,x2d, respectively,

L1fsx1d +E dx2f * sx2dVsx1,x2dwsx1,x2d = 0, s16d

sL1 + L2dcsx1,x2d + Vsx1,x2dwsx1,x2d = 0, s17d

where the operatorsL1 andL2 stand for

L j = − "2¹ j
2/s2md − m − E0 + Vextsxjd, j = 1,2,

and f, w and c are simply related by Eq.(9). Due to this
relation, Eq.(16) is nonlinear with respect tof and can be
associated with the GP equation. Equation(17) is the ana-
logue of the two-particle Schrödinger equation and is linear
with respect tow, though not uniform. The obtained system
of two equations allows us to determine the coupling con-
stant self-consistently. A specific feature of Eq.(16) is the
nonlocalnature of the last term, which can play a role when
the radius of the interacting potential becomes of the order of
the characteristic length of the anisotropic trapping potential
in some direction, say,Re, lz!j, or if the trapping potential
has a strongly oscillating contribution with the scale of the
order of Re. At the same time, Eqs.(16) and (17) indeed
reduce to the GP equation with the 3D coupling constantg
=4p"2a/m in the limit Re!j! lx, ly, lz as will be shown in
Sec. III B 1.

When the external potential becomes independent of
some coordinate, sayz, particles can move freely in
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z-direction and we should impose the boundary conditions
that follow from Bogoliubov’s principle of correlation weak-
ening [50]:

kĈsxdĈsx8dl . kĈsxdlkĈsx8dl when uz− z8u → `.

Physically, this implies that the functioncsx1,x2d
=kq̂sx1dq̂sx2dl vanishes at the spatial distances of order of
the coherence(healing) length, ur 1−r 2u*j.

A time-dependent generalization of Eqs.(16) and(17) can
in principle be derived from the equations of motion of the
field operators. Here, however, we will not elaborate the full
derivation but instead present a simple argument that leads to
a useful time-dependent scheme. In the case of a time-
independent Hamiltonian, it can be easily seen that the GP
order parameter depends on time as

fsx,td = kN − 1uĈsx,tduNl = fsxdexpf− isEN − EN−1dt/"g

= fsxdexpf− im8t/"g.

Here, uNl and EN are the ground state and energy ofN
bosons, respectively. By analogy, we findcsx1,x2,td
=csx1,x2dexpf−i2m8t /"g and wsx1,x2,td=wsx1,x2dexpf
−i2m8t /"g. We now argue that the chemical potential in Eqs.
(16) and (17) arises due to time derivatives, which leads to
the obvious generalization

i"
]

]t
fsx1,td = Ĥ1fsx1,td + Enlsx1,td, s18d

i"
]

]t
wsx1,x2,td = fĤ1 + Ĥ2 + Vsx1,x2dgwsx1,x2,td

+ fsx1,tdEnlsx2,td + fsx2,tdEnlsx1,td,

s19d

where we denote

Ĥj = −
"2¹ j

2

2m
+ Vextsxj,td, j = 1,2,

Enlsx,td =E dyf * sy,tdVsx,ydwsx,y,td.

The functionsf=kĈsx,tdl andw=kĈsx1,tdĈsx2,tdl are nor-
malized as edxufsx,tdu2=N0 and edx1dx2uwsx1,x2,tdu2
=N0sN0−1d.N0

2, respectively. The time-dependent general-
ized GP equations(18) and (19) become the ordinary one-
and two-body Schrödinger equations, respectively, in the
limit j@ lx, ly, lz when we can neglect all the nonlinear terms,
which are responsible for many-body effects. Therefore they
are of slightly more general validity than the stationary equa-
tions (16) and (17), which imply a large particle number,
sinceEN−EN−2.2sEN−EN−1d.2m8 is valid only for N@1.
We notice that the time-dependent equations similar to those
of (18) and(19) were derived in[67] by the method of non-
commutative cumulants.

D. Properties and limits of validity

The time-dependent equations(18) and (19) give access
to the elementary excitation spectrum. At the moment we
cannot prove the gaplessness of the spectrum in the most
general case, but we can solve for the excitation energies
approximately. With the ansatzwsr1, r2,td=fsr1,tdfsr2,tdf1
+csrd /n0g, we obtain the Bogoliubov excitation energyvk

=ÎTk
2+2n0UskdTk with the k-dependent scattering amplitude

Uskd (for the notations see Sec. III A). This form of the spec-
trum for a singular two-particle interaction was proposed
without derivation by Bogoliubov in Ref.[6]. For smallk we
can replaceUsk=0d=4p"2a/m and obtain the usual(gap-
less) Bogoliubov dispersion. The additional features in the
obtained spectrum at medium and high energies reflect the
structure of the interaction potential neglected in the standard
GP approach and present a clear advantage of our extended
scheme. As a consequence, we can expect that Levinson’s
theorem for quasiparticle scattering[53] will be modified.

Let us discuss limits of validity of the generalized GP
equations(16) and (17). First, we imply that the Bose-
Einstein condensate(or quasicondensate in low dimensions,
see Sec. III B) is developed strongly. This means thatr0!j,
wherer0 is an average distance between bosons[3,4]. Sec-
ond, the above derivation can be applied only to the short-
range interaction potentials that decrease at least as fast as
Vsrd,1/r«+D for r →`, where D is dimension and«.0
[16,17]. For a long-range interaction like Coulomb repulsion,
the approximation(8) works badly. Third, the approxima-
tions(8) and(B20) are insufficient to describe the long-range

behavior of the normalkq̂†sx1dq̂sx2dl and anomalous

kq̂sx1dq̂sx2dl correlation functions, which are governed by
Bogoliubov’s “1/q2” theorem [50,54,55]. According to this
theorem, the above correlation functions should decay as
1/ur 1−r 2u2 when ur 1−r 2u*j at zero temperature if the Bose-
Einstein condensate exists. Our scheme gives 1/ur 1−r 2u de-
cay, as we show in Sec. III A. However, we stress thatthe
long-range behavior is not needed for obtaining the coupling
constant, since the integral in Eq.(16) contains the anoma-
lous correlation function multiplied by the short-range poten-
tial Vsx1,x2d with the characteristic radiusRe&j. Since the
developed scheme describes well only the short-range behav-
iour of csx1,x2d for ur 1−r 2u&j, the integration in the last
term of Eq.(14) should be restricted to this region

N =E dx1ufsx1du2 +E
ur 1−r 2uøj

dx1dx2ucsx1,x2du2, s20d

otherwise we obtain formally divergent term. This modifica-
tion of the original scheme, however, does not change the
working equations(16)–(19) in the regionur 1−r 2uøj, which
is of sole interest for our purposes. We stress that Eq.(20) is
really needed only when minimizing the energy functional
(15) directly. Furthermore, if we obtain the solutions of Eqs.
(16) and (17) as functions of the chemical potential in the
grand canonical ensemble, then the condition(14) or (20)
can be employed without the second term at all in order to
rewrite the answer in terms of the total number of particles in
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the canonical ensemble, owing to small condensate deple-
tion.

Note that the standard HFB approximation can be ob-
tained by using the variational scheme if, first, one substi-
tutes Eqs.(3)–(5) into the energy functional(15), second,
employ the restrictions Eqs.(B18) and (B19), and third, re-
tain all additional terms missing in Eq.(8), where the three-

and four-boson averages ofq̂ and q̂† ought to be evaluated
by means of the Wick’s theorem and, consequently, the
three-boson averages vanish.

III. EXAMPLES

In this section we restrict ourselves to spinless bosons
with an isotropic short-range interactionV=Vsrd, where r
= ur 1−r 2u. Even after this simplification, the solution of the
generalized GP equations(16) and (17) remains a rather
complex problem. Nevertheless, in a number of specific lim-
iting cases we are able to obtain analytic results.

A. The homogeneous case

Let us investigate Eqs.(16) and (17) in three and two
dimensions for the homogeneous Bose gas. In the homoge-
neous caseVext=0, hence we havec=csrd, E0=0, and Eq.
(16) gives the trivial solutionf=În0=const. In this subsec-
tion, we use the common notationn0 for the condensate den-
sity in both 2D and 3D cases. Thus, Eqs.(16) and(17) read

m =E drVsrdfn0 + csrdg,

2mcsrd = −
"2

m
¹2csrd + Vsrdfn0 + csrdg,

and csrd→0 for r →` in accordance with Bogoliubov’s
principle of correlation weakening. Taking the Fourier trans-
formation of the last equation, we obtain

m = n0Us0d, s21d

cskd
n0

= − P
Uskd

2sTk − md
, s22d

where we denote Uskd=edrVsrde−ik·rf1+csrd /n0g, Tk

="2k2/ s2md, and the symbol P stands for the principle value
of the associated integral. The latter appears as a natural
regularization for the singular denominator in the RHS of
Eq. (22) and implies that the scattering part of the two-body
wave functioncskd is real and corresponds to a standing
wave. Note that another regularization, such as the standard
replacementk→k± i«, leads to the same results in the lead-
ing order at small densities. Within the more accurate method
[16,17], we obtain the same equation as Eq.(22) but with the
Bogoliubov denominator 2ÎTk

2+2n0UskdTk. The latter pro-
vides the correct values ofboth the short- and long-range

behavior of the correlatorcsrd=kq̂sr dq̂s0dl [which is the
Fourier transform ofcskd], while Eq.(22) provides only the
short-range behavior. Indeed, in the 3D case we havecsrd

,cossÎ2r /jd / r at r *j (see below) but notcsrd,1/r2 as it
should be.

Equation (22) can be rewritten in the Lippmann-
Schwinger form with the help of the Fourier transformation.
By using the familiar property of Fourier transformation
edkeik·rgskdfskd / s2pdD=edr 8fsr 8dgsr −r 8d (hereD is the di-
mension), we obtain the equation forwsrd=n0+csrd

wsrd = n0 +E dr 8Vsr8dwsr8dGsur − r 8ud, s23d

where the Green function is introduced

Gsrd = − PE dk

s2pdD

eik·r

2sTk − md
. s24d

In the dilute limit, when the average distance between par-
ticles is much less than the coherence length, the wave func-
tion wsrd /n0, describing the behavior of two particles in the
condensate, should be proportional[15,56] to the s-wave
functionws0dsrd, which corresponds to relative motion of two
particles with zero momentum and obeys the two-body
Schrödinger equation in the center-of-mass system

− s"2/md¹2ws0dsrd + Vsrdws0dsrd = 0. s25d

In the 3D case, the coefficient of proportionality is equal
to unity [6] in the leading order with respect to the density,
provided the following boundary conditions are imposed:
first uw3D

s0dsrdu,` at r =0 and second,w3D
s0dsrd→1−a/ r for r

→`. In the developed formalism, this can be easily inferred
from the obtained equation(23). Indeed, direct integration in
Eq. (24) givesG3Dsrd=−mcossÎ2r /jd / s4p"2rd, and, hence,
G3Dsrd.−m/ s4p"2rd when r &j. Thus we havewsrd
.n0w3D

s0dsrd within this region, and integration of Eq.(25)
yields Us0d=4p"2a/m. For the dilute gas we have alson0

.n, and Eq.(21) leads to the familiar expression for the
chemical potentialm.4p"2na/m.

In the 2D case, the low-energy behavior of the 2D Green’s
function (24) is easily calculated: G2Dsrd
.m/ s2p"2dlnfegr / sÎ2jdg whenr &j. Then it is not difficult
to see from Eq.(23) that, first, wsrd /n0 obeys the 2D
Schrödinger equation(25), and, second, its asymptotics for
r →` is

wsrd/n0 → 1 + lnfegr/sÎ2jdgmUs0d/s2p"2d. s26d

Hence, due to linearity of Eq.(25), the solution forwsrd
should be proportional to the wavefunctionw2D

s0dsrd that obeys
the 2D Schrödinger equation(25) with the following bound-
ary conditions: first uw2D

s0dsrdu,` at r =0 second,w2D
s0dsrd

→ lnsr /a2Dd for r →`. The latter equation can be considered
as the definition of the 2D scattering length[57]. Note that in
the case of hard disks,a2D coincides with the radius of the
disks. It is convenient to introduce the dimensionless param-
eter u by the relationUs0d=4p"2u/m, such thatu is the
dimensionless scattering amplitude for two bosons in a me-
dium of other bosons. By comparing the asymptotics(26)
with that of w2D

s0dsrd, we derive
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wsrd = 2un0w2D
s0dsrd,

− lnsa2D/jd = 1/s2ud + lnseg/Î2d. s27d

With the help of Eq.(21) and the definition ofj (see above),
the relation(27) becomes a self-consistent equation foru

1/u + ln u = − lnsn2Da2D
2 2pd − 2g, s28d

where we neglect the condensate depletion in the leading
order, puttingn0.n2D. By means of the latter approxima-
tion, the expression(21) takes the form

m = 4p"2n2Du/m. s29d

Thus, the 2D chemical potential is given by Eqs.(28) and
(29), which lead to the density expansion

m =
4p"2n2D

m
S−

1

lnsn2Da2D
2 d

+
1

ln2sn2Da2D
2 d

3lnF−
1

lnsn2Da2D
2 dG + ¯ D . s30d

Equations(28) and(29) are in agreement with the results of
Refs. [10–12] and with the more accurate scheme of Ref.
[13], which yields the correction for the chemical potential

m = s4p"2n2D/mdsu + u2 + ¯ d. s31d

Here,u is given by the more exact relation

1/u + ln u = − lnsn2Da2D
2 pd − 2g, s32d

whereg=0.5772. . . is the Euler constant. By means of this
relation, one can rewrite Eq.(31) in terms of the gas param-
eter n2Da2D

2 and obtain three more terms in the expansion
(30). Note that Eq.(32) differs from Eq.(28) by a numerical
factor under the logarithm, which is essential only for obtain-
ing these additional terms but not the terms given by relation
(30).

B. The inhomogeneous case

1. The Gross-Pitaevskii regime

First of all, we should verify that the equations obtained
in Sec. II lead to the standard GP scheme in the caseRe
!j! l, where l is the characteristic length of an isotropic
trap. In this regime, one can expect that the pair wave func-
tion wsr 1,r 2d is very close to that obtained in the homoge-
neous case, with the difference that the density is spatially
dependent now. So, we put by definitionwsr 1,r 2d
=fsr 1dfsr 2dw̃sr 1,r 2d and csr 1,r 2d=fsr 1dfsr 2dc̃sr 1,r 2d,
and, hence,w̃sr 1,r 2d=1+c̃sr 1,r 2d by Eq. (9). Substituting
those expressions into Eqs.(16) and (17) yields

F−
"2

2m
¹1

2 − m − E0 + Vextsr 1dGfsr 1d + fsr 1dufsr 1du2

3E dr 2Vsur 1 − r 2udw̃sr 1,r 2d = 0, s33d

−
"2

2m
s¹1

2 + ¹2
2dc̃sr 1,r 2d + Vsr 1 − r 2dw̃sr 1,r 2d

= ffsr 1d + fsr 2dgc̃sr 1,r 2d, s34d

where we use the conditionRe!j in the first equation and
introduce the notation

fsr d =E dr 8ufsr 8du2Vsr − r 8dw̃sr ,r 8d +
"2

m

=rfsr d
fsr d

· =r ,

s35d

with the last term being a differential operator. Since
wsr 1,r 2d.fsr 1dfsr 2d at the distances of order of the corre-
lation length, we havew̃sr 1,r 2d.1 at these distances. Con-
sequently, the LHS of Eq.(34) remains finite when the den-
sity tends to zero, while the RHS becomes small. Indeed, the
first term of Eq.(35) is of order of"2an/m. The second term
is less than"2/ smj2d because the characteristic scale of the
order parameter cannot be smaller thanj in the casej! l and

the same applies toc̃. Hence, in the leading order we can
completely neglect the RHS of Eq.(34), which leads to the
standard Schrödinger equation(25) for w̃. Thus, we come to
the approximation

wsr 1,r 2d . fsr 1dfsr 2dw3D
s0dsrd. s36d

Using the well-known relation for the 3D scattering length

4p"2a/m=E d3rVsrdw3D
s0dsrd, s37d

we can rewrite Eq.(33) in the standard GP form with the
coupling constantg=4p"2a/m. Note that, nevertheless, the
equilibrium value of the energy(15) differs from that of the
GP value(1) by the terms arising from the condensate deple-
tion because the second term in the RHS of Eq.(10) is not
equal to zero. We will discuss these corrections to the energy
in Secs. IV and V.

2. 2D regime

Here we consider the Bose gas confined only inz direc-
tion by the trapping potentialVext=Vextszd. The system is
homogeneous in thex-y plane and assumed to be infinitely
large. Physically this means that thex-y size of the system is
much larger than the characteristic radius of the trapping
potential lz;Î" / smvzd. The order parameterf now be-
comes independent ofx and y, and the two-body function
depends on the relative distancer= ur1−r2u between points
r1=sx1,y1d and r2=sx2,y2d, so wsr 1,r 2d=wsz1,z2,rd. The
2D regime is provided by the conditionlz!j. Moreover, the
conditionRe!j is fulfilled in most experiments. As was dis-
cussed in Sec. I the density profile is then governed by the
ground state solutionf0szd of the one-particle Schrödinger
equation

f− "2¹2/s2md − E0 + Vextszdgf0szd = 0,

because the second term in Eq.(16) can be treated as a small
correction. Thus, we can put in the leading orderfszd
.În2Df0szd; f0szd is normalized to unity. By analogy with
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standard perturbation theory, the chemical potential, as the
first correction toE0, can be found with the unperturbed
eigenfunctionf0. So, multiplying Eq.(16) by f0sz1d and
integrating byz1 yield

m = n2DE drŨsrd, s38d

where by definition

Ũsrd ; E dz1dz2V„Îr2 + sz1 − z2d2
…

3 wsz1,z2,rdf0sz1df0sz2d/n2D. s39d

In the same manner, one can multiply Eq.(17) by
f0sz1df0sz2d and carry out the integration byz1 andz2, which
results in the equation

2f"2¹r
2/s2md + mgc̃srd = Ũsrd s40d

for the function

c̃srd =E dz1dz2csz1,z2,rdf0sz1df0sz2d/n2D. s41d

Thus, we arrive at the system of equations(38) and (40),
which coincides with that of Eqs.(21) and (22) in homoge-

neous case if we putUskd=edrŨsrde−ik·r and perform the
Fourier transformation of Eq.(40). By the same method as in
Sec. III A, we obtain the asymptotics for sufficiently larger
[physically, for Re!r!j, when only the first term domi-
nates in Eq.(40)]

w̃srd . 1 + lnfegr/sÎ2jdgmm/s2p"2n2Dd, s42d

where by definition

w̃srd =E dz1dz2wsz1,z2,rdf0sz1df0sz2d/n2D = 1 + c̃srd.

s43d

The latter relation is due to Eqs.(9) and (41).
In order to obtain the chemical potential in terms of the

3D scattering lengtha and the lengthlz of the trapping po-
tential, we use the following approximation:[58]

wsz1,z2,rd = Cw3D
s0dsrdn2Df0sz1df0sz2d s44d

in the regionr ! lz!j, wherer =Îr2+sz1−z2d2, andw3D
s0dsrd

denotes the 3D solution of the Schrödinger equation(25)
with asymptotics forr @Re

w3D
s0dsrd . 1 − a/r . s45d

Here the crucial point is that the constantCÞ1, which de-
termines the 2D behavior of the system. If we substitute Eq.
(44) into Eq. (43) and take the integral, we arrive at a new
expression forw̃srd. This should be expanded with respect to
the dimensionless variabler / lz and compared with Eq.(42).
Since the main contribution in that integral comes from the
asymptotics(45), one can use it instead of the function
w3D

s0dsrd itself. By performing this procedure for the harmonic

trapping potential with f0szd=expf−z2/ s2lz
2dg /ÎlzÎp, we

have

w̃srd . C +
2Ca

lzÎ2p
lnfeg/2r/s2Î2lzdg.

Comparing this relation with Eq.(42) yields

C = Î2plzu/a, s46d

and the chemical potential is given by Eq.(29) with the
dimensionless parameteru obeying the equation

1/u + ln u = Î2plz/a − g − lns16pn2Dlz
2d. s47d

This result form is well consistent with relations(38) and
(39). Indeed, substitution of Eq.(44) with constant(46) into
Eq. (39) leads to Eq.(29) provided that the relation(37) is
employed in conjunction with the approximation expf−sz1

−z2d2/ s2lz
2dg.1 due to the integration with the short-range

potential withRe! lz. In the leading order at small 2D den-
sities, expressions(29) and (47) result in

m =
4p"2n2D

m

1
Î2plz/a − g − lns16pn2Dlz

2d
. s48d

This differs from the result[35] of Petrov, Holzmann, and
Shlyapnikov only by the additional numerical term −g
−ln 2=−1.2703. . . in the denominator. We note that the heal-
ing length in two dimensions takes the formj=1/Î4pn2Du,
which differs from that in three dimensionsj=1/Î4pna.
Due to the criterion 1/În2D!j, the obtained results relate to
sufficiently small densities, for whichu!1.

3. 1D regime

Contrary to the 3D and 2D nonideal Bose gases, there is
no Bose-Einstein condensate in one dimension[10,59] in the
thermodynamic limit, because the long-wave fluctuations of
the phase break the off-diagonal long-range order. Neverthe-
less, one can speak about the quasicondensate[44] if a size
of the 1D system is sufficiently small. Indeed, at zero tem-
perature the phase fluctuations are suppressed if lnsLz/jd
!n1Dj [44,45], which can be fulfilled only at finite number
of particles. HereLz stands for the size inz direction.

All calculations concerning the 1D quasicondensate in the
caseRe! lr!j can be done in complete analogy with the 2D
inhomogeneous Bose gas considered in the previous subsec-
tion. The gas is strongly confined in thex-y plane by the
harmonic trapping potential inVext=mvr

2r2/2 with the length
lr=Î" / smvrd, and remains homogeneous inz direction. In
the regime involved, we can putfsrd=În1Df0srd, f0srd
=expf−r2/ s2lr

2dg / lr
Îp is the ground state solution of the

one-particle Schrödinger equation with the energyE0="vr.
Reasoning by analogy with Sec. III B 2, we obtain

m = n1DE dzŨszd, s49d

where we introduce the even functionŨszd=Ũs−zd
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Ũszd =E dr1dr2V„Îsr1 − r2d2 + z2
…

3 wsr1,r2,zdf0sr1df0sr2d/n1D.

The 1D analogue of Eq.(40) is the equation

2F "2

2m

d2

dz2 + mGc̃szd = Ũszd s50d

for the function

c̃szd =E dr1dr2csr1,r2,zdf0sr1df0sr2d/n1D.

Equation(50) can be rewritten in the Lippmann-Schwinger
form at m→0 (see discussion in Sec. III A)

w̃szd = 1 + sm/"2d E dz8Ũsz8duz− z8u/2 s51d

for the functionw̃szd, defining as

w̃szd =E dr1dr2wsr1,r2,zdf0sr1df0sr2d/n1D. s52d

Equations(49) and (51) give the asymptotics forRe!z!j

w̃szd . 1 + mmuzu/s2n1D"2d. s53d

On the other hand, in the regionr ! lr!j we can use the
analogue of Eq.(44)

wsr1,r2,zd = Cw3D
s0dsrdn1Df0sr1df0sr2d, s54d

which leads to the asymptotics after the integration in Eq.
(52)

w̃szd . C − CsÎp/2 − uzu/lda/lr. s55d

Comparing Eqs.(53) and (55) yields

C = 1/s1 −Îp/2a/lrd, s56d

m =
2"2n1D

m

a

lr
2

1

1 −Îp/2a/lr

, s57d

which differs from Olshanii’s result[47] through the numeri-
cal factorsÎp=1.772. . . in the denominator instead of the
constant 1.4603… introduced by him. We note that in the
paper[47] a'=Î2" / smvrd=Î2lr in our notation. One can
see that the criteria of applicability of the obtained results
lr!j and 1/n1D!j impose the following restriction on the
1D density:

a

lr
2 ! n1D !

1

a
, s58d

sincej. lr /Î2an1D in one dimension.

IV. THE KINETIC, INTERACTION, AND EXTERNAL
FIELD ENERGY OF THE TRAPPED BOSE GAS

The simplest method for obtaining the values of the inter-
action energy(3), the kinetic energy(4), and the energy of

interaction with an external field(5), is to apply the varia-
tional theorem. The latter can be formulated in general as
follows. If a function fsxd obeys the functional equation

dFfhfsxdj,lg/dfsxd = 0 s59d

with the functionalF depending on the functionfsxd and the
parameterl, then the solution of Eq.(59) fsxd= f0sx,ld is
also dependent onl. Nevertheless, when calculating the de-
rivative of the stationary value of the functional with respect
to l, we can take into consideration only the explicit depen-
dence on this parameter

dFfhf0sx,ldj,lg/dl = ]Ffhf0sx,ldj,lg/]l. s60d

This is obvious due to Eq.(59).
The variational theorem(60) is still valid if the functional

contains two or more functions. In our case, the functions
can be associated withfsx1d and csx1,x2d involved in the
energy functional(15). ConsideringN as the parameter of
the variational theorem, we come to the standard thermody-
namic relation]E/]N=m8=m+E0. One can rewrite this de-
rivative in terms of the energy per particle«=E/N and the
density of particles]E/]N=]s«nd /]n, which gives the rela-
tion «=s1/nde0

ndn8msn8d+E0. Then relations(29) and (47)
lead to

«2D . 2p"2n2Du/m+
"2

2mlz
2 , s61d

with u given by Eq.(47). In the same manner, we obtain
from Eq. (57) [60]

«1D =
"2n1D

m

a

lr
2

1

1 −Îp/2a/lr

+
"2

mlr
2 . s62d

Equations(61) and(62) give us the equilibrium value of the
energy(15) per particle in the 2D and 1D cases, respectively.
In order to calculate the interaction energy with the help of
the variational theorem, one can replaceV→lV and differ-
entiate« with respect tol at l=1. All we need to know is
the derivative of the 3D scattering length, which reads
[16,61]

l
]a

]l
= m

]a

]m
=

m

4p"2 E d3rfw3D
s0dsrdg2lVsrd. s63d

It is convenient to introduce one more characteristic length
[16], the positive parameterb,

b = a − lU ]a

]l
U

l=1
=

1

4p
E d3r u ¹ w3D

s0dsrdu2.

So, we have

«2Dint .
2p"2n2D

m
u2

Î2plz
a

S1 −
b

a
D , s64d

«1Dint .
"2n1D

m

a

lr
2S1 −

b

a
D , s65d

where we use the approximationu2/ s1−ud.u2 in Eq. (64)
and restrict ourselves by the leading order in Eq.(65).
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With the same method, replacingVext→lVext (which is
equivalent tol → l /Î4l) and differentiating, we arrive at the
external energy per particle

«2Dext.
2p"2n2D

m

u2

4
SÎ2plz

a
− 2D +

"2

4mlz
2 , s66d

«1Dext.
"2n1D

2m

a

lr
2 +

"2

2mlr
2 . s67d

In the same manner, we have«kin=−m]« /]m, which leads to

«2Dkin .
2p"2n2D

m
u −

2p"2n2D

m
u2F1

4
SÎ2plz

a
− 2D

+
Î2plz

a
S1 −

b

a
DG +

"2

4mlz
2 , s68d

«1Dkin .
"2n1D

m

b

lr
2 −

"2n1D

2m

a

lr
2 +

"2

2mlr
2 . s69d

One can see that sum of the kinetic, external and interaction
energies equals to the total energy, as it should be. Note that
the developed formalism allows us to calculate the interac-
tion energy directly, starting from the expression(11) and
using Eq.(37), since we have the analytic expressions(44),
(46), (54), and (56) for the short-range behavior of the
anomalous average.

We note that the ratiob/a need not be small. In particular,
it is of order of ten for the realistic interaction potentials of
alkali atoms[48]. We stress that the term with the lengthb
appears in the mean interaction energy by virtue of the the
short-range two-body correlations at the distances of order of
a and in the mean kinetic energy by sufficiently large mo-
menta of order ofp*" /a in the momentum distribution. In
the static structure factor, this region is rather difficult to be
measured experimentally. The density expansion method
gives the value of the release energy that is defined assumof
the interaction and kinetic energies

«2Drel .
2p"2n2D

m
u −

2p"2n2D

m

u2

4
SÎ2plz

a
− 2D +

"2

4mlz
2 ,

s70d

«1Drel .
"2n1D

2m

a

2lr
2 +

"2

2mlr
2 . s71d

As one can see, the parameterb is canceled and not involved
in the values of the release energy. Let us compare the values
of the release(70) and (71) and total energy(61) and (62).
The energy of zero-point oscillation is involved in the release
energy with the factor 1/2, as it should be for the harmonic
trap. The other terms would coincide in the standard GP
approach, but we have obvious difference due to accounting
for the noncondensate contribution. In principle, the obtained
corrections should be measurable in experiments.

V. VIRIAL THEOREM

The virial theorem can be obtained immediately from the
energy functional(15) if we consider its variation in vicinity
of the stationary state(ground state) with respect to the scal-
ing transformation of the ground state functionsf0 and c0,
obeying the generalized GP equations(16) and(17). Namely,
we substitute into Eq. (15) the functions fsr 1d
=a3/2f0sar 1d andcsr 1d=a3c0sar 1,ar 1d. Replacing the vari-
ables in the integralsr 1→ar 1 and r 2→ar 2, we notice that,
first, the last term in the functional equals to zero for anya,
and, second, the other terms can be written in terms of its
stationary values

Esad = a2Ekin + Eext/a
2 + EintfVsr/adg. s72d

Since the variation of the functional should be zero for any
small variations of the functions, we have dE/da=0 at a
=1, which leads to

2Ekin − 2Eext + Eintf− rV8srdg = 0, s73d

where the terms are given by Eqs.(11)–(13). The value of
the last term corresponds to the interaction energy with the
potential −rV8srd=−rdVsrd /dr. In the case of the GP ap-
proximation(36), one can simplify the last item in Eq.(73)
by means of Eq.(37) and relation[6]

4p"2a

m
= −E

0

`

dr4pr2fws0dsrdg2S2Vsrd + r
dVsrd

dr
D .

The result takes a form

Eint .
1

2
E dRufsRdu4E dr f− rV8srdgfw3D

s0dsrdg2

=
2p"2

m
s3a − 2bd E dRufsRdu4. s74d

If the potential is of the weak-coupling type[18], one can
neglectb!a and arrive at the virial theorem obtained for the
d-function interaction potential[3].

If the system is homogeneous in thex-y plane (the 2D
Bose gas of Sec. III B 2) or in thez direction (the 1D Bose
gas of Sec. III B 3), it can be considered as confined by in-
finite walls in associated directions. Then one should be care-
ful when deriving the virial theorem from Eq.(72), as all its
terms relate to the densityn2D/a2 or n1D/a for the 2D or 1D
Bose gas, respectively. For this reason, we come to

2n2D
]«2D

]n2D
= 2«2Dkin − 2«2Dext+ «2Dintf− rV8srdg, s75d

n1D
]«1D

]n1D
= 2«1Dkin − 2«1Dext+ «1Dintf− rV8srdg. s76d

The interaction term in these equations can be easily calcu-
lated by analogy with Eq.(74) but using Eqs.(44) and(54),
respectively. It is not difficult to be convinced with the help
of Eqs. (61) and (62) that the virial theorems(75) and (76)
are fulfilled.
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One can also find a relation between the chemical poten-
tial and the various parts of the energy. Let us multiply Eq.
(16) by fsx1d and integrate overx1, and multiply Eq.(17) by
csx1,x2d and also integrate overx1 and x2. Summing the
obtained expressions yields

Nm = Ekin1 + 2Ekin2 + Eext1+ 2Eext2+ 2Eint. s77d

Here,Eext1 andEkin1 are the condensate contributions in the
external and kinetic energies given by the last terms in Eqs.
(12) and(13) , respectively, andEext2 andEkin2 are associated
with the noncondensate contributions, given by the residual
parts of these equations. One can easily see that the relation
(77) is fulfilled with Eext1 andEkin1 corresponding to the last
terms in Eqs.(66)–(69) for the 2D and 1D Bose gases, re-
spectively. One can notice thatEkin2 could be negative for the
1D Bose gas, ifb,a/2 [see the first two terms in Eq.(69)].
Certainly, this is not a drawback of Eqs.(16) and (17) it is
but due to the choice of anzatzfsrd=În1Df0srd, which
leads to overestimation of the quasicondensate contribution
Ekin1 in the 1D kinetic energy. Indeed, the Gaussian profile
n1Duf0srdu2 relates to thetotal density of the 1D gas

kĈ†sr dĈsr dl but not to the “quasicondensate component”
ufsrdu2. The latter is difficult to define accurately in the 1D
case, since there is no eigenvalue of the one-body density
matrix that is proportional to the total number of particles.
Nevertheless, we stress that the total value ofE1Dkin is posi-
tive, and the results(65), (67), and (69) look quite reason-
able.

VI. CONCLUSIONS

The main result of this paper are the generalized GP equa-
tions in the time-dependent(18) and(19) and stationary form
(16) and (17), which allow us to determine the interaction
term self-consistently for interaction potentials even contain-
ing a hard core. The method, which can be used for homo-
geneous, strongly inhomogeneous quasi-low-dimensional,
and crossover regimes was derived within a general HFB
framework.

The HFB method is a mean-field approximation, which
generally works well only for weak-coupling potentials[18].
In order to extend the HFB scheme to hard-core potentials,
the bare interaction potential is usually replaced by a renor-
malized pseudopotentialVsrd→ s4p"2/mdd3sr d. However,
such a replacement leads to an ultraviolet divergence and
incorrect treatment of short-range correlations of the par-
ticles. We have shown that the appropriate renormalization
can be obtainedwithin the HFB scheme if, from the two-
body density matrix, only the anomalous correlation function

wsx1,x2d=kĈsx1dĈsx2dl is retained. The anomalous correla-
tion function can be interpreted as the wave function of two
bosons in the condensate. Its short-range behavior is de-
scribed well in the proposed scheme at the cost of losing the
correct description of the long-range behavior. However,
long-range correlations are not needed for deriving the non-
linear term in the generalized GP approach, which instead is
determined by short-range correlations. Methods which can
describe both the short- and long-range correlations accu-

rately were discussed in Refs.[13,16,17,24], but these meth-
ods are appropriate only for the homogeneous Bose gas. The
method proposed in this paper was shown to work as well in
inhomogeneous situations. Cigar(quasi-1D) and pancake
(quasi-2D) geometries were considered as examples. Fur-
thermore, it was shown that the contribution of short-range
correlations to the kinetic and release energies of a tightly
trapped gas can be calculated within this scheme and that
they are substantial. Interesting future applications of the
proposed method may include the modification of the non-
linearity in quasi-1D waveguides[62,63] and molecular
Bose condensates in optical lattices.
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APPENDIX A: TWO-BODY WAVE FUNCTIONS IN THE
HARTREE-FOCK-BOGOLIUBOV APPROXIMATION

In general, the two-body density matrix can be expanded
in a complete set of its eigenfunctions

kĈ†sx1dĈ†sx2dĈsx28dĈsx18dl = o
n,m

Nn,mwn,m
* sx1,x2d

3 wn,msx18,x28d. sA1d

The eigenfunctions can be called two-body or pair wave
functions. If they are normalized to unity, it follows from Eq.

(A1) that edx1dx2kĈ†sx1dĈ†sx2dĈsx2dĈsx1dl=NsN−1d
=on,mNn,m, i.e., the sum of allNn,m is the total number of
pairs. Therefore, the non-negative quantityNn,m can be inter-
preted as the mean number of the pairs in the statesn ,md,
any pair being doubly taken.

Let us consider the homogeneous spinless Bose gas in the
HFB approximation[22,25]. Within that approximation, the
two-body wave functions can be easily calculated[15]. The

statistical average of any product of quantum operatorsq̂

and q̂† can be calculated with the Wick–Bloch–De Domini-
cis theorem[64], since the Hamiltonian is approximated by a
quadratic formof the Bose operatorsâp

† and âp connected
with initial operatorsâp

† andâp by the canonical Bogoliubov
transformations(see Appendix). Extracting thec-number

part Ĉ=În0+q̂ and Ĉ†=În0+q̂† and using that theorem,
one can rewrite the four-boson average in the form

KĈ†SR +
r

2
DĈ†SR −

r

2
DĈSR8 −

r 8

2
DĈSR8 +

r 8

2
DL

= n0
2w̃ * srdw̃sr8d +E d3pd3qF2n0dsq/2 − pd

nsqd
s2pd3

+
nsq/2 + pd

s2pd3

nsq/2 − pd
s2pd3 GÎ2 cossp · r dÎ2 cossp · r 8d

3 expfiq · sR8 − Rdg, sA2d

where we put by definition w̃srd=1+kq̂sR+r /2dq̂sR
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−r /2dl /n0. Because the expansion(A2) is written in the ther-
modynamic limit, the sum in Eq.(A1) becomes an integral.
The Bose-Einstein condensate manifests itself in presence of
d-functions in this integral(note that the first term in the
RHS can be included in the integral with the help of the
d-functions). By comparing the representation(A1) with that
of Eq. (A2), one can conclude the following.

(i) The quantum numbers of the pair wave functions are
the relative momentumn=p and the center-of-mass(total)
momentumm=q of two particles; all these functions belong
to continuous spectrum and thus describe the scattering of
two bosons in the medium of the other bosons.

(ii ) The maximum eigenvalueN0sN0−1d.N0
2 with p=q

=0 corresponds to the state of two particles in the conden-
sate; its normalized eigenfunctionw̃srd /V can be interpreted
as a pair wave function of the condensate-condensate type.

Thus, the anomalous averagekq̂sr dq̂s0dl can be associated
with the scattering part of the two-body wave function of the
bosons in the condensate[15]; in particular, it is responsible
for the short-range spatial correlations of two bosons in the
Bose-Einstein condensate.

(iii ) The other macroscopic eigenvalues 2N0nq with q
= ±2p correspond to the two-body states with one particle in
the condensate and another one beyond the condensate; its
eigenfunctions Î2 cossq ·r /2dexpfiq ·Rg /V are of the
condensate-noncondensate type[66]. The residuary nonmac-
roscopic eigenvaluesnsq /2+pdnsq /2−pd are related to the
noncondensate-noncondensate pairs with the two-body wave
functionsÎ2cossp ·r dexpfiq ·Rg /V.

Note that the wave function of the condensate-condensate
type is not reduced to a product of two one-body wave func-
tions in the condensate, which equal to 1/ÎV for the homo-
geneous Bose gas. This is obvious, as particles in the Bose-
Einstein condensate interact with each other and with the
other particles beyond the condensate. Another important
point is that all the other two-body wave functions are sym-
metrized plane waves(consistent with the Born approxima-
tion) in the framework of the HFB method. This is evidently
a disadvantage of the HFB scheme. As a consequence, we
always arrive at divergences for a hard-core potential when
evaluating the contribution of the condensate-noncondensate
and noncondensate-noncondensate wave functions in the in-
teraction energy(3). At the same time, the contribution of the
condensate-condensate “channel” should be finite in the in-
teraction energy provided the anomalous averages are calcu-
lated in a self-consistent manner. The generalization of the
expansion(A2) beyond the HFB approach and more detailed
discussions can be found in Ref.[15]. The pair wave func-
tion method of Ref.[15] was generalized to the inhomoge-
neous systems in Ref.[68].

APPENDIX B: RELATION BETWEEN THE NORMAL
AND ANOMALOUS TWO-BOSON AVERAGES

Let us establish a relation between the normal

kq̂†sx1dq̂sx2dl and the anomalous averagekq̂sx1dq̂sx2dl for
the vacuum state, which describes the behavior of the
N-body system at zero temperature, in the framework of the

Hartree-Fock-Bogoliubov method. We remember that the
vacuum stateu0l is defined asanu0l=0 for anynÞ0, here the
quasiparticle creation and destruction operatorsân

† and ân

can be introduced through the Bogoliubov transformation
sf Þ0d

âf = o
n

8sufnân + v fnân
†d, sB1d

âf
† = o

n

8sufn
* ân

† + v fn
* ând, sB2d

where f and n denote discrete(multi)indices. The sumon8
meansonÞ0 and the Bose-operatorsâf

† and âf create and
destruct a particle in the eigenstatef fsxd of the one-body

matrix kĈ†sx8dĈsxdl

E dx8kĈ†sx8dĈsxdlf fsx8d = nff fsxd,

normalized ase dxuf fsxdu2=1. Note that the set of eigenfunc-
tions including the normalized condensate functionf0sxd
=kĈsxdl /ÎN0 with N0=nf=0 is complete and orthogonal,

o
f

f f
*sxdf fsx8d = dsx − x8d, sB3d

E dxf f
*sxdf f8sxd = dsf − f8d, sB4d

where we define the “discrete”d-function as

dsfd = H1, f = 0,

0, f Þ 0.
J

From the Bose commutation relationsfâf ,â†f8g=dsf − f8d
andfâ f ,â†f8g=dsf − f8d and Eqs.(B1) and(B2) we obtain at
f , f8Þ0,

o
n

8sufnuf8n
* − v fnv f8n

* d = dsf − f8d, sB5d

o
n

8sufnv f8n − v fnuf8nd = 0. sB6d

By using the definition of the quasiparticle vacuum state and
Eqs.(B1) and (B2), we can calculate the averages

Fsf, f8d = kâf
†âf8l = o

n

8v fn
* v f8n, sB7d

Fsf, f8d = kâfâf8l = o
n

8ufnv f8n. sB8d

Our purpose is to find the relation between the normal
Fsf , f8d and the anomalousFsf , f8d averages for that state. In
order to simplify our calculations, we rewrite Eqs.(B1) and
(B2) in the matrix notations
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S â

â†D = XS â

â†D, X = S U V

V* U*
D . sB9d

Here the matrixX is composed of the matrixsUdi j =uij and
sVdi j =vi j . The columns contain the operatorsâf and âf

†, and
ân andân

†, respectively. We use the standard notations for the
complex conjugatesV* di j =vi j

* , transposedsVTdi j =v ji , and
Hermitian conjugate matrixsV†di j =v ji

* . Then Eqs.(B7) and
(B8) read

F = V * VT = F†, F = UVT = FT, sB10d

and Eqs.(B5) and (B6) can be written as

S U V

V* U*
DS U† − VT

− V† UT D = S1 0

0 1
D , sB11d

where 1 denotes the identity matrix. Let us introduce the
composed matrices

s3 = S1 0

0 − 1
D, s+ = S1 0

0 0
D , sB12d

and rewrite Eq.(B11) in the form

Xs3X
†s3 = 1, sB13d

where 1 stands now for the composed identity matrix, i.e.,
the RHS of Eq.(B11). The matrix representation(B13) is
very convenient. For example, from this equation we have
X−1=s3X

†s3, and

S â

â†D = s3X
†s3S â

â†D = S U† − VT

− V† UT DS â

â†D ,

which reads in usual notations

â f = o
n

8sunf
* ân − vnfân

†d,

â f
† = o

n

8sunfân
† − vnf

* ând.

This equation together with the commutation relations leads
to

o
n

8sunf
* unf8 − vnfvnf8

* d = dsf − f8d,

o
n

8svnfunf8
* − unf

* vnf8d = 0,

which is nothing else but the matrix equationX†s3Xs3=1,
resulting from Eq.(B13).

Employing the idea of Ref.[65], in which the Hartree-
Fock-Bogoliubov method for Fermi systems was developed,
we define the matrixK with the help of the notations(B10)
and (B12)

K = X†s3s+Xs3 = S1 + F* − F

F* − F
D .

Due to Eq. (B13) and the relationss+d2=s+ we haveK2

=K. Rewriting the latter equation in terms of the matrixF
andF, we obtain two independent relations

F * F = F + F2, sB14d

F * F = FF, sB15d

which read in components

o
f

8F * sf1, fdFsf, f2d = o
f

8Fsf1, fdFsf, f2d + Fsf1, f2d,

sB16d

o
f

8Fsf, f1dFsf, f2d = o
f

8Fsf1, fdFsf, f2d. sB17d

By using these equations, Eqs.(B3) and (B4), and the defi-

nition q̂sxd=o8nânfnsxd, one can rewrite Eqs.(B16) and
(B17) in the coordinate representation

E dxkq̂†sx1dq̂†sxdlkq̂sxdq̂sx2dl = kq̂†sx1dq̂sx2dl

+E dxkq̂†sx1dq̂sxdlkq̂†sxdq̂sx2dl, sB18d

E dxkq̂†sxdq̂sx1dlkq̂sxdq̂sx2dl

=E dxkq̂sx1dq̂sxdlkq̂†sxdq̂sx2dl. sB19d

If the condensate depletion is small, one can neglect the sec-
ond term in the RHS of Eq.(B18), which is of the next order.
Thus, we obtain the expression

kq̂†sx1dq̂sx2dl . E dxkq̂†sx1dq̂†sxdlkq̂sxdq̂sx2dl.

sB20d

Note that Eq.(B19) turns into identity in the approximation
(B20), and the same is valid for Eqs.(B15) and (B17).
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