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A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii
equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs
due to medium effects and the trapping potential, e.g., in quasi-1D or quasi-2D systems. It is shown that a
simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the
condensate and a two-body wave function describing the behavior of a pair of bosons in the Bose-Einstein
condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme
that admit analytical estimations are considered and compared to the literature. In addition to the well-known
cases of low-dimensional trapping, crossover regimes can be studied. The values of the kinetic, interaction,
external, and release energies in low dimensions are also evaluated and contributions due to short-range
correlations are found to be substantial.
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[. INTRODUCTION spectively. This generalization can be understood as a local

. . . . density approximation, which yields consistent energy values
The Gross-Pitaevsk{iGP) equation[1] is a powerful tool j; the homogeneous and inhomogeneous cases but does not

for describing most of the physical properties of BoSe-reyeg| the nature of the additional nonlinearity in the GP

Einstein condensates of trapped alkali atofsse reviews equation. Moreover, it is not clear what the nonlinearity
[2-5)). In the GP approach, the ground state energy of &hould be in the crossover regimes from 2D to 3D and from
trapped dilute Bose gas of atoms of masss the functional 1D to 3D. A mathematically rigorous justification of the GP
5 functional[14] is of importance but hardly can help us in this
E= f dr{h—lwlzw <r>|¢|2+9¢>|4} (1) ~siuaton.
2m ext 2 ' The purpose of the present paper is to show how a
density-dependent renormalized coupling constant emerges
of the order parametep=(r)=(¥(r)), where ¥ (r) is the natu_rally_ln a S|m_pI|f|ed Hartree-FO(_:k-Bong|ub(JI\7iFB) ap-
bosonic field operator and,(r) is an external trapping po- prOX|mat|0n starting .from the bgre interaction potenﬂ(il).
tential. The coupling constamy in the GP functionall) is TOdthIS end, we c_jenve glegeralllfed C’P equapons_whe;e the
intimately related to the density expansion of the energy ogr er pa_rarpheter |sdcoupte t_:_)ht ‘T F;talf \r/]vave lun(auork;o tV\aq
the homogeneous Bose gas. Indeed, in the homogeneoggSons In the condensate. *he ‘atler has aiready been dis-
case Eq(1) yields E/N=gn/2 wheren=N/V=|¢[2 is the ssed in detail in Refd13,15-17. The generalized GP
3D density. This expression should be equal to the know equations permit us to consider interaction potentials with a

. ; ; . _ 2 _ ard core directly without thé-function replacement by ac-
first term in the density expansid®/N=2x#an/min three ¢ rately accounting for the short-range spatial correlations of
dimensiong6,7]. With a being the 3D scattering length, the the particles. These correlations become essential in low di-

coupling constang=4m%2a/m coincides with the zero mo- mensions since the Born approximation for two scattering
mentum limit of the Scattering amplitude, the tWO-bOdy particles fails at small momenti@ee, e.g., Ref[19], Sec.
T-matrix, for two particles scattering in a vacuum. This stan-45). We note that the correct treatment of the short-range
dard approach based on the low-density expansion of thgorrelations is also possible within the Jastfa@ and the
homogeneous gas neglects the influence of inhomogeneOP%ddeev-YakubovskVZl] approaches.
trapping potentials which may require a renormalization of |t is well known that the original HFB scheme leads to an
the coupling constant. artificial gap in the spectrurf22,23. Moreover, this scheme
The situation is more complicated for two dimensionalin conjunction with thes-function replacement has an ultra-
Bose gases, which can be regarded as the limiting case of\gglet divergence[7,24]. These problems then have to be
3D gas with a highly inhomogeneous trapping potential. Ko-cyred by further approximations as classified by Grifgif].
lomeisky et al. [8] proposed that the forr(l) of the energy  Alternatively, complicated renormalization procedures
functional is still valid. However, in this case the coupling [26,27] or pseudopotentia|$28’2q have been Suggested. In
constant becomes dependent on the local density. Indeeghis paper we will discuss a novel approximation derived
Schick's result for the energy E/N=27%°np/[  from the full HFB scheme where the use of the bare two-
-min(n,pa3y)] of a dilute 2D Bose gaf9] leads to the cou-  body potential provides an implicit renormalization, and the
pling constantg=4#2/(-min|$[?a3y) [8] and further cor-  ultraviolet divergences are avoided. We will discuss the ex-
rections were derived in Ref$§10-13. Here,n,p anda,p  citation spectrum and show that it is gapless in a reasonable
denote the two-dimensional density and scattering length, reapproximation.
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Low dimensional Bose systems are not only of generalvell-defined order parameter. Long-range fluctuations of the
theoretical interest but also find the attention of current exphase, which become important for many physical properties
perimental exploratiorf30-33. In these experiments, the in low-dimensional trap$43], are beyond the scope of our
low dimensional condensate is realized by highly anisotropischeme. They can be studied by means of the approaches of
3D trapping potentials when the single-particle energy-leveRefs. [35,36,44,4% Also the strongly-interacting fermion-
spacing in the tightly confined dimensions exceeds the intetized regime of the Tonks-Girardeau gg32], which was
action energy between atoris,, ,= u. Here the frequencies studied in Ref[46], cannot be described with the methods of
are associated with the axially symmetric harmonic potentialthis paper. However, we note that our scheme, within its
and u is the part of the chemical potential coming from the accuracy, is simple and physically transparent and able to
particle interaction, which is of order of the mean interactionreproduce not only the value of the coupling constant in 1D
energy per particle. This criterion takes the folp=<¢ in [47] and 2D[35] regimes but also to describe the 3D-2D and
terms of the coherence lengés#/\um [34] and the radial 3D-1D crossovers. Furthermore, it allows us to calculate di-
(axial) harmonic oscillator length, ,=\%/(Mw, ). rectly the correct values of the kinetic and interaction ener-

Theoretically, the 2D regimé((&,1,))é was investigated ~gies of bosons in the trap, which anet given by the first
in detail by Petrov, Holzmann, and Shlyapnik{85]. The and the third terms, respectively, in the GP functio(®l
coupling constant was assumed to be Thmatrix of two  [48].
particles scattering in the harmonic trap withF> at the The paper is organized as follows. In Sec. Il we derive the
energy of relative motiofE=2u. An additional nonlinearity generalized GP functional and corresponding equations from
is introduced, since the local value @fdepends on the den- a simplified HFB approximation. In Sec. lll, a few specific
sity and the coupling constant in a self-consistent way. In thisases are considered that admit analytical estimations, in-
regime, the motion of particles is confined zrdirection to  cluding the homogeneous and inhomogeneous Bose gases in
zero-point oscillation. This implies that the order parametetow dimensions. In Sec. IV we calculate the values of vari-
can be represented in the formd(x,y,z)=¢y(2)p(x,y),  Ous contributions in the energy. In particular, the release en-
wheregy(2) is the ground state of the 1D harmonic oscillator €rgy of the low dimensional gases is estimated. In Sec. V we
and (){)(X,y) is governed by the two dimensional GP equationderive. a useful .Vil’ial theprem and a relation between the
resulting from the functionall) in two dimensions. So, in chemical potential and different parts of the energy func-
this regime, the behaviour of the condensata-inplane is ~ tional. The eigenfunctions of the two-body density matrix
the same as in the “pure” 2D case with the 2D scatteringtnd @ relation between the normal and anomalous averages
length written in terms of the length of the tight confine- are obtained within the HFB approximation in Appendices A

ment[35]. and B, respectively.
An improved many bodyl-matrix theory was developed
by Stoof and co-workerg36] in order to describe not only  |I. GENERALIZED GROSS-PITAEVSKII EQUATIONS

the homogeneous low-dimensional Bose gases but also the
crossover from 3D to lower dimensions. The coupling con-
stant in the inhomogeneous case is represented by the local In the standard approad-5], the equilibrium value of
value of theT-matrix, which depends on the local value of the order parametep is determined by minimization of the
the chemical potential. The local-matrix approximation GP functionak1) with the constraint of particle-number con-
was also used in Ref37] and the microscopic approach of servations(E—u'N)/d¢* (r)=0. HereN=Nj, is the number
Ref. [38]. Thus, one can say, slightly simplifying the situa- of particles and the chemical potential appears as a
tion, that the common method of evaluating of the couplingLagrange multiplier. Introducing for later convenienge
constant in the above works is to determine firstThmatrix  =,’'-E, as the chemical potential due to interaction where
from the corresponding two-body Schrédinger equation SupE, is the ground state energy of a noninteracting particle, we
posing that the motion of the particles is infinite in somearrive at

directions, and after that to replace the coupling constant by 42

the local value of theT-matrix. In this paper we offer a __" 2

method beyond the locdl-matrix approximation. The cou- (Eo+w¢= 2mV +Vedr) b+ g ¢ @
pling constant is determined self-consistently for a given 3D T . o .
geometry from a unified variational scheme. As a result, W% The simplicity of this derivation is based on the simple

A. Failure of standard GP approach

obtain a nonlocal term in the energy functional, which can b orm of the GP energy functiongl), where the effects of the

of practical importance if the external potential varies on the inary mterp_artlcle Interactions has been reduced to a single
scale of the interaction potential. This may be realized, e.g parameter given by the coupling constant. In order to deter-

for condensates of loosely-bound molecules in tight ofhine the constant self-consistently, it should be examined
; . 4 i
strongly oscillating potentials like optical lattices. We expectc"’lrEfUIIy how the interaction terrfy/2)|¢|* appears in the

experiments to enter this regime in the near future as botfpP functional(1).

atomic condensates in optical latticexl,39 and molecular h Ina gene_ral malmy-bfoc:]y ;ystem .W'th bmary_ mtefractlpns,l
condensatef40—43 are currently under intense experimen-t e expectation value of the interaction energy is a functional

tal investigation. of the two-bodydensity matrix(\iﬁ(xl)\i”(xz)\if(xé)\i’(xi)).
As a starting point of our approach we assume that wd=or a pairwise interaction potentialV(xy,Xp)=V(ry
have a Bose-Einstein condensate or quasicondensate with-a,, o4, 0,) we thus obtair{19,49
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slow spatial variation of the order parameter and the validity
of the Born approximatm the former is usually fulfilled as
U V2T (x )0 I the healing lengtlk=7%/yum as a lower bound of the length
X (V00 W), ® scale of the order paramete,4] is usually much larger than
where x=(r,o) stands for the coordinate and spin or sortthe effective range of the interaction. The latter assumption,
indices of a particle, respectively, anfix---=3_[dr---. however, is clearly not fulfilled for experiments with cold
The kinetic energy and the energy of interaction with anatomic gases as their interactions are of the hard-core type.
external field are determined by the one-body matrix The validity of the GP approach can be extended to such
<\i’T(x)‘i'(x’)> systems by an argument attributed to Landéul6]. He
noted that at extremely low energies, as predominant in the
p? 52 ~ . dilute-gas BEC, the scattering properties are completely de-
Exn={ > — :——fde)Z((\IfT(x’)\If(x)>|X,:X, termined by only one single parameter, which is the 3D
i 2m 2m s-wave scattering lengtla. This allows us to replace the
(4) Born approximation for the scattering amplitudg by its
exact valueg=4xf%a/m, which can be found from the two-
body Schrédinger equation even for hard-core potentials.
Eoxi= <2 Vext(xi)> = j dxvext(x)<\if'r(x)\ir(x)>_ (5)  This indirect argument, however, cannot be used in one or
i two dimensions as there is no such simple relation between
) ) _ the integral in Eq.6) and the scattering amplitude as we
The behavior of the one- and two-body matrices is easy thayve in three dimensions. Furthermore the Born series for

understand in the dilute limit, when the condensate depletiofhe scattering amplitude diverges for small momenta in two
(N=Np)/N is small. We note that the number of bosons in thegimensions and belosee, e.g., Ref19], Sec. 45.

condensaté\, is defined as the macroscopic eigenvalue of
the one-body density matrix(¥T(x)¥(x')), that is
fdx’(@’r(x’)\if(x»(i)o(x')=N0¢0(x). The field operator can be

expanded in the complete orthonormal set of e|genfunct|on‘s)roach may be remedied by accounting for the two-particle

of the on’e-body matriX\If(x):éo¢0(x)24- 2,8,4,(%), where  geattering processes explicitly. Within the HFB scheme this
the sumX, meansX,, and [dx|¢,(x)|*=1. Appearance of s possible through certain correlations introduced by the
the Bose-Einstein condensate implies the macroscopic OCCHyctuation operator:%. In order to see the relation between

pation of No, I.€., the rat'.ONO/ N remains finite in the ther- the two-particle scattering process and the correlation func-
modynamic limit. Following Bogo"UbO\[G’SqAWeAnOWJ‘E' tions mentioned above it is useful to introduce the concept of
place the condensate operators dayumbersaO:aO:A\sNo a two-body orpair wave function in the mediuraf other

and represent the Bose field operator in the folMx)  particles[15,50. The pair wave functions in the medium of
=¢(x)+f9(x) [51]. Here ¢(X)=\“‘°Wo¢o(x) is the c-number the many body system are defined as eigenfunctions of the

) =S 5 ; two-body density matrix, as discussed in detail in Appendix

=3 h f hich
part, aAndﬁ(i() Va”d)y()f) t e_operator part, for which we A. They should be distinguished from the two-body wave
have(¥(x))=¢(x) and(9(x))=0. Thus, the order parameter fnciions in the vacuum, which relate to a system of two

is nothing else but the non-normalized eigenfunction of theyarticles. For the latter we will use the superscripit
one-body density matrix. Let us suppose that we know the exact eigenfunctions of

In the original approach of Gross and Pitaevskii, the simthe two-body density matrix. Then we can expect for the
plest mean-field approximation is used when the operatogilute gas, where low-momentum two-body processes domi-
part is completely neglected¥(x)=¢(x) and WT(x) nate the behavior of the system, that the pair wave functions
= ¢* (x). Assuming additionally that the order parameterin the medium should be very clog&5] to the two-body
does not change significantly at the distances of order of theave functions in the vacuum, which are the solutions of the
radius R, of the interaction potential, we obtain the GP en-two-body Schrddinger equation. This physical assumption
ergy functional(1) for spinless bosons from Eq¢3)«5)  was used to obtain the density expansions for thg BD17]
with the coupling constant and 2D[13] homogeneous Bose gases in a very simple man-
ner. However, various approximations in the many-body
theory can break this relation.

1
Eint = <§E V(Xi,%))

Of the two assumptions mentioned above, namely the
=—fdxldX2V(X1,X2)
i#]

B. Pair wave function in a medium

The above described deficiencies of the naive GP ap-

g:gazfdrv(r). (6)

This coupling constant can be identified with the two-body C. A simplified HFB scheme

scattering amplitude at zero momentum in the Born approxi- Within the HFB approximation for the homogeneous
mation. The validity of the GP approach with the coupling Bose gas, all eigenfunctions of the two-body density matrix
constantgg of Eg. (6) is certainly linked to the validity con- except for one are plane waves and are thus treated in the
dition of the Born approximation at zero momentum that theBorn approximation as shown in Appendix A. This is an
potentialV(r) be small and integrable. obvious drawback of the HFB scheme. It turns out that the
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two-body wave function that is not a plane wave is propor- 1 ~ A
tional to the anomalous average Biin =7 f AxadXoth* (Xq, %) (T1 + To) h(Xq, X2)
@(x, %) = (¥ (x) W(x2)) ) + f dxg* (%) T1b(Xe), (13)

and corresponds to the macroscopic eigenvlg(@,—1) in .

the limit of largeN. It is the pair wave function that describes WhereT;=~%2V?/(2m) andj=1, 2. Thetotal number of par-
the two-particle scattering process in the medium of thdicles is related directly to the one-body matridl
Bose-Einstein condensafé5,52. Thus we can go beyond :jdx<\ir‘r(x)\ir(x)>_ With Eqg. (10) we find

the Born approximation in the framework of the HFB

method by kegplng only the cor?trlbutlon of t_he _anomalous N = f dX1|¢(X1)|2+f dxg %] (X, %) |2. (14)
average(V(x;)W(x,)) and neglecting the contribution of the

other wave functions in the two-body density matrix. Due t0The cyrrent approximations are useful for a variational
small condensate depletidiN-No)/N<1, one can expect gcheme where the functions(x;) and g(x;,x,) are deter-
that the contribution of only this eigenfunction will be suffi- ined py minimization of the total energy with the con-
cient for obtaining the coupling constant in the GP equationgiraint N=const. Using the Lagrange method, we obtain
In this simplified version of the HFB approximation we set the conditions SE/ Sh(Xq) = SE/ 8p* (xq) = SE/ Sih(Xq, Xo)

=8E/ 5i* (x1,%2) =0 for the energy functional
El ¢, ¢} u']1=Ein + Eeat Bt =’ (N=N), (15

given by Egs.(11)—(14). Here u'=u+E, is the chemical
potential andV=(N) is the average number of particles, i.e.,
@(Xq, %) = (Xy) B(Xo) + tlXg, Xo) (9) the Ieft—hand_ sidéLHS) of Eq. (14) at th_e equilibrium yqlues
of the functions¢ and ¢ corresponding to the minimum
(ground statgof the functional(15). Note that the variation
gg_//(xl,xz) is symmetric under the permutation xf and x,,
S0, the equation [dx;dX,g(X;,X%s) d¢(X1,%X,)=0 leads to
g(X1,%) +9(X,,X%1) =0 for arbitrary functiongy(x,x,).

This variational procedure yields the following system of
equations for the one- and two-body functios$x;) and
o(X1,X%5), respectively,

(W)W W (X)W (X)) = @ * (X3, %) p(X),%5).  (8)

Extracting the c-number part of the field operator, the
anomalous averages can be rewritten as

where we introduced the notatiofi(x;,X,) = (9(X1) H (X))
for the anomalous two-boson correlation function associate
with the scattering part of the two-body wave function. The
functions o(x4,%,) and ¢4(x;,X,) are symmetric with respect
to permutation ok; andx, due to the commutation relations
for the Bose field operators.

For the one-body density matrix we fifdT(x)W(x’))

:fb* ()()¢(xf)+<§}‘r(x){‘}(x’)>, VYe pote that the normal Lid(x)) + f dXd* (Xo)V(X, %) (X, %) =0,  (16)
(9'(x)9(x’)y and anomalougd(x)9(x’)) averages are not

independent quantities as discussed in Appendix B and Refs. _

[16,17). Within the Hartree-Fock-Bogoliubov scheme, the re- (L1 + L2900 %0) + VX1, X0) (X1, %) =0, 17

lations between them appear as a specific property of th@here the operatorg§; and £, stand for
HFB ground statéthe quasiparticle vacuunand do not con-

— 2v2 P
tain parameters of the Hamiltonian in explicit form. We will Ly==hVil2m) - p=Eo+ VedX), [=1.2,
use the approximate relatigB20), which leads to and ¢, ¢ and ¢ are simply related by Eq9). Due to this
relation, Eq.(16) is nonlinear with respect tg and can be
T (/) = 4 % / * / associated with the GP equation. Equat{dq) is the ana-
(FFx)) = ¢ () b(x )+f ot (X)X logue of the two-particle Schrédinger equation and is linear

(10) with respect top, though not uniform. The obtained system
of two equations allows us to determine the coupling con-
; ; ; stant self-consistently. A specific feature of E@b) is the
:’:ﬁ:;gﬁ tuzlgnO;mEaglzlﬁ?;(vlgagees rewrite Eqs(3)5) in nonlocglnature o'f the Ia_st term, which can play a role when
the radius of the interacting potential becomes of the order of
the characteristic length of the anisotropic trapping potential
2 (11 in some direction, sayR.~1,<<¢, or if the trapping potential
has a strongly oscillating contribution with the scale of the
order of R.. At the same time, Eqg16) and (17) indeed

1
EintzéfdxldXZV(leX2)|§D(leX2)

1 reduce to the GP equation with the 3D coupling constant
Eey= > f A%, A% Veyi(X1) + Vexd(X2) 1| th(X1,%0) |2 =4mh?a/min the limit Ry<£<l,, 1, 1, as will be shown in
Sec. Il B 1.
) When the external potential becomes independent of
+ f X Vexi(X1)| (%) |2, (12 some coordinate, say, particles can move freely in
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z-direction and we should impose the boundary conditions
that follow from Bogoliubov’s principle of correlation weak-

ening[50]:

(W) (x) = (P(X))}W (X)) when|z—2'| — .

Physically, this implies that the functiony(x;,x,)

:<f}(x1){‘}(x2)> vanishes at the spatial distances of order o

the coherencéhealing length,|r,—r,| =&
A time-dependent generalization of E¢$6) and(17) can

in principle be derived from the equations of motion of the
field operators. Here, however, we will not elaborate the full
derivation but instead present a simple argument that leads
a useful time-dependent scheme. In the case of a tim
independent Hamiltonian, it can be easily seen that the GB

order parameter depends on time as

B(x.t) = (N = LW (x,|N) = p(x)ex— i (Ey - Ey_t/A]
= p(x)exd—iu't/h].

Here, [IN) and Ey are the ground state and energy Mf
bosons, respectively. By analogy, we fing(x;,x,,t)
=X, X)exg—i2u't/h]  and  @(X1,Xo,1) = @(X1, Xo)ex

PHYSICAL REVIEW A 70, 043622(2004)

D. Properties and limits of validity

The time-dependent equatios8) and (19) give access
to the elementary excitation spectrum. At the moment we
cannot prove the gaplessness of the spectrum in the most
general case, but we can solve for the excitation energies
approximately. With the ansaig(ry,ry,t)=(ry,t) p(ro,t)[ 1
+y(r)/ny], we obtain the Bogoliubov excitation energy,
= \/Tﬁ+ 2n,U(K) T, with the k-dependent scattering amplitude
U(k) (for the notations see Sec. IIl)AThis form of the spec-
trum for a singular two-particle interaction was proposed
without derivation by Bogoliubov in Ref6]. For smallk we

n replacelU(k=0)=4m%%a/m and obtain the usualgap-
es9 Bogoliubov dispersion. The additional features in the
btained spectrum at medium and high energies reflect the
structure of the interaction potential neglected in the standard
GP approach and present a clear advantage of our extended
scheme. As a consequence, we can expect that Levinson’s
theorem for quasiparticle scatterifig3] will be modified.

Let us discuss limits of validity of the generalized GP
equations(16) and (17). First, we imply that the Bose-
Einstein condensat@r quasicondensate in low dimensions,
see Sec. lll Bis developed strongly. This means thgt ¢,
wherer, is an average distance between bosf$)4]. Sec-

~i2u't/1]. We now argue that the chemical potential in Egs.ond, the above derivation can be applied only to the short-
(16) and(17) arises due to time derivatives, which leads torange interaction potentials that decrease at least as fast as

the obvious generalization

ih%qﬁ(xbt) = H1h(x1,0) + Eqy(xq,0), (18)

iﬁ%ﬂxlyxz,t) = [|:|1 + |:|2 +V(X1,X2) |(Xq, X2, 1)
+ ¢(X1,t)En|(X2,t) + ¢(X2,t)En|(X1,t),
(19

where we denote

H] =-—1 +Vext(X]‘,t),

#2v?
j = 1121
2m

Er‘ll(x!t) = f dY¢ * (y,t)V(X,Y) @(X,y,t) .

The functions¢:<‘if(x,t)> andgo:<\if(x1,t)\i'(x2,t)) are nor-
malized as [dX¢(X,1)[2=Ny and [dx,dX,|e(Xs,Xo,1)]?

V(r)~1/re*P for r — o, whereD is dimension ande>0
[16,17. For a long-range interaction like Coulomb repulsion,
the approximation8) works badly. Third, the approxima-
tions(8) and(B20) are insufficient to describe the long-range

behavior of the normal(%’r(xl)é(xz» and anomalous

(9(x1)9(xy)) correlation functions, which are governed by
Bogoliubov’s “1/g?’ theorem[50,54,55. According to this
theorem, the above correlation functions should decay as
1/]r,—r,> when|r,—r,| = £ at zero temperature if the Bose-
Einstein condensate exists. Our scheme gives, tf,| de-

cay, as we show in Sec. Il A. However, we stress it
long-range behavior is not needed for obtaining the coupling
constant since the integral in Eq16) contains the anoma-
lous correlation function multiplied by the short-range poten-
tial V(xq,X%p) with the characteristic radiuR.=< ¢. Since the
developed scheme describes well only the short-range behav-
iour of y(x;,%,) for |r;—r,|=<¢, the integration in the last
term of Eq.(14) should be restricted to this region

N= f dxq| p(xy)[* + fl | dxydxol ¢(xq, )%, (20)
rl—rzsg

:NO(NO—l):NS, respectively. The time-dependent general-

ized GP equation$l8) and (19) become the ordinary one- otherwise we obtain formally divergent term. This modifica-
and two-body Schrodinger equations, respectively, in theion of the original scheme, however, does not change the
limit £>1,, 1,, 1, when we can neglect all the nonlinear terms, working equationg16)—(19) in the regionr,—r,| < ¢, which
which are responsible for many-body effects. Therefore theys of sole interest for our purposes. We stress that(#0).is

are of slightly more general validity than the stationary equareally needed only when minimizing the energy functional
tions (16) and (17), which imply a large particle number, (15) directly. Furthermore, if we obtain the solutions of Egs.

sinceEy—Eyn_,=2(Eny—En-1) =2/ is valid only for N> 1.

(16) and (17) as functions of the chemical potential in the

We notice that the time-dependent equations similar to thosgrand canonical ensemble, then the condititd) or (20)

of (18) and(19) were derived in67] by the method of non-

commutative cumulants.

can be employed without the second term at all in order to
rewrite the answer in terms of the total number of particles in
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the canonical ensemble, owing to small condensate deple- cos(\ﬁr/g)/r atr=¢ (see belowbut noty(r)~1/r? as it
tion. should be.

Note that the standard HFB approximation can be ob- Equation (22) can be rewritten in the Lippmann-
tained by using the variational scheme if, first, one substiSchwinger form with the help of the Fourier transformation.
tutes Egs.(3)«5) into the energy functionall5), second, By using the familiar property of Fourier transformation
employ the restrictions Eq¢B18) and(B19), and third, re-  fdke*"g(k)f(k)/(2m)P=/dr'f(r")g(r—r’) (hereD is the di-
tain all additional terms missing in E¢8), where the three- mension, we obtain the equation fap(r)=ng+ ¢(r)
and four-boson averages ¢fand 9 ought to be evaluated

by means of the Wick's theorem and, consequently, the —n Nl / e
three-boson averages vanish. ¢(r) =" drV(r)e(r)G(r - r)), (23
Il EXAMPLES where the Green function is introduced
. . . . dk eik-r
In this section we restrict ourselves to spinless bosons G()=-P (24)

with an isotropic short-range interactiof=V(r), wherer @mP2(Ty- )
=|r,—r,|. Even after this simplification, the solution of the . o .
generalized GP equationd6) and (17) remains a rather In the dilute limit, when the average distance between par-
complex problem. Nevertheless, in a number of specific limdicles is much less than the coherence length, the wave func-
iting cases we are able to obtain analytic results. tion ¢(r)/n, describing the behavior of two particles in the
condensate, should be proportiorjdb,5¢ to the s-wave
function ¢©(r), which corresponds to relative motion of two
_ _ _ particles with zero momentum and obeys the two-body
Let us investigate Eqg16) and (17) in three and two  Schrodinger equation in the center-of-mass system
dimensions for the homogeneous Bose gas. In the homoge-

neous cas&/,,=0, hence we have/=y(r), E,=0, and Eq. — (H2M) V20O (1) + V(1) ¢9(r) = 0. (25)
(16) gives the trivial solutionp=yny=const. In this subsec- - . o
tion, we use the common notatiog for the condensate den- In the 3D case, the coefficient of proportionality is equal

- to unity [6] in the leading order with respect to the density,
sity in both 2D and 3D cases. Thus, E¢B6) and(17) read provided the following boundary conditions are imposed:

first [@(r)| <o atr=0 and seconde(r)—1-a/r for r
ﬂ:f drV(r)[ng + ¢Ar)], — . In the developed formalism, this can be easily inferred
from the obtained equatiai23). Indeed, direct integration in
52 Eq. (24) gives Gap(r)=—mcos\2r/ &)/ (4mh?r), and, hence,
2uip(r) = = —V2y(r) + V(r)[ng + ()], Gap(r)=-m/(4wh?r) when r<§& Thus we have ¢(r)
m =nogp(30D)(r) within this region, and integration of Eq25)
and y(r)—0 for r—o in accordance with Bogoliubov's Yields U(0)=4n#i%a/m. For the dilute gas we have alsg

principle of correlation weakening. Taking the Fourier trans-=n, and Eq.(21) leads to the familiar expression for the

A. The homogeneous case

formation of the last equation, we obtain chemical potentiak = 4#2na/m.
B In the 2D case, the low-energy behavior of the 2D Green’s
n=noU(0), (21 function (24 is easily calculated: G,p(r)
=m/(2wh3)In[e’r/(v2&)] whenr < & Then it is not difficult
P _ 5 UK (220 10 see from Eq.(23) that, first, ¢(r)/n, obeys the 2D
Ng 2T—w)’ Schrddinger equatio25), and, second, its asymptotics for
where we denote U(k)=[drV(r)e ™ [1+y(r)/ng], Ty r—e=is
—7212 O
=#°ks/(2m), and the symbol P stands for the principle value o(r)ing — 1+ In[eVr/(\eEg)]mU(O)/(Zﬂ'hz). (26)

of the associated integral. The latter appears as a natural
regularization for the singular denominator in the RHS ofHence, due to linearity of Eq25), the solution fore(r)
Eq.(22) and implies that the scattering part of the two-bodyshould be proportional to the wavefunctigf)(r) that obeys

wave functiony/(k) is real and corresponds to a standingine 2p Schrédinger equatiq@5s) with the following bound-
wave. Note that another regularization, such as the standag}y conditions: firS'[|(p(20[>)(I’)|<00 at r=0 second <p(20,;(r)

replacemenk— k+ig, leads to the same results in the 'ead'—>ln(r/a2D) for r — o0, The latter equation can be considered

. . . gs the definition of the 2D scattering leng87]. Note that in
[16,17, we obtain the same equation as &) but with the the case of hard disks,p coincides with the radius of the

Bogoliubov denominator Ti+2ngU(K)T. The latter pro-  gisks It is convenient to introduce the dimensionless param-
vides the correct values dfoth the short- and long-range eter u by the relationU(0)=4#2u/m, such thatu is the
behavior of the correlatog(r)=(9(r)%(0)) [which is the dimensionless scattering amplitude for two bosons in a me-
Fourier transform of/(k)], while Eq.(22) provides only the dium of other bosons. By comparing the asymptoti26)
short-range behavior. Indeed, in the 3D case we hgve  with that of go(zor),(r), we derive
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r) = 2unyed(r), #2 —~
elr) No¢2n(r) _En(vi+vg)¢(rlyr2) +V(ry—rJo(ry,ry)

— In(ayp/é) = 1/(2u) + In(e”42). (27)

With the help of Eq(21) and the definition ot (see abovg
the relation(27) becomes a self-consistent equation dor

=[f(ry) + F(ro) J(ro,ro), (34)

where we use the conditioR,< ¢ in the first equation and
introduce the notation

Lu+Inu=-In(nypagp2m) - 2y, (29) V. (1)

ﬁ2
f(r)=fdr’ (r)PV(r =r'Jg(r,r') + — Vi,
where we neglect the condensate depletion in the leading (") m () '
order, puttingny=n,p. By means of the latter approxima- (35)
tion, the expressio2l) takes the form

with the last term being a differential operator. Since
= Amh’nypu/m. (29 o(rqi,ro)=¢(r,)é(r,) at the distances of order of the corre-
lation length, we havép(r,,r,)=1 at these distances. Con-
sequently, the LHS of Eq34) remains finite when the den-
sity tends to zero, while the RHS becomes small. Indeed, the

dariPnyg 1 1 first term of Eq.(35) is of order ofi?an/m. The second term
= (— is less thami?/(mé&?) because the characteristic scale of the
order parameter cannot be smaller tlgan the case& <1 and

inl - 1 (30) the same applies tg. Hence, in the leading order we can
In(N,pasp) : completely neglect the RHS of E¢34), which leads to the

standard Schrodinger equati@b) for @. Thus, we come to
Equations(28) and(29) are in agreement with the results of the approximation

Refs.[10-12 and with the more accurate scheme of Ref.

Thus, the 2D chemical potential is given by E@88) and
(29), which lead to the density expansion

M

2\ T2 2
m In(npasp)  IN“(nypasp)

[13], which yields the correction for the chemical potential @(r1,15) = (r ) (r,) eSp(r). (36)
= (Amhnyp/m)(U+ W2+ ). (31) Using the well-known relation for the 3D scattering length

Here,u is given by the more exact relation 4ﬂ,h2a/m:f dBrv(r)eQ(r), (37)
1u+Inu=-In(nypasym) — 2y, (32)

we can rewrite Eq(33) in the standard GP form with the
where y=0.5772... is the Euler constant. By means of thiscoupling constang=4mx7i?a/m. Note that, nevertheless, the
relation, one can rewrite E@31) in terms of the gas param- equilibrium value of the energgl5) differs from that of the
eter n,pas, and obtain three more terms in the expansionGP value(1) by the terms arising from the condensate deple-
(30). Note that Eq(32) differs from Eq.(28) by a numerical tion because the second term in the RHS of @4) is not
factor under the logarithm, which is essential only for obtain-equal to zero. We will discuss these corrections to the energy
ing these additional terms but not the terms given by relationn Secs. IV and V.

. 2D regime
(30). 2 9 .
B. The inhomogeneous case _ Here we consider the Bo_se gas confined onlyg 'niirec-_
_ o tion by the trapping potentiaV/,,=Vex(2). The system is
1. The Gross-Pitaevskii regime homogeneous in the-y plane and assumed to be infinitely

First of all, we should verify that the equations obtained!@rg€. Physically this means that tkey size of the system is
in Sec. Il lead to the standard GP scheme in the ®se much _Iarger than the characteristic radius of the trapping
<¢<l, wherel is the characteristic length of an isotropic Potential |,=7%/(mw,). The order parametes now be-
trap. In this regime, one can expect that the pair wave funccomes independent of andy, and the two-body function
tion ¢(r4,r,) is very close to that obtained in the homoge-depends on the relative distange|p;—p,| between points
neous case, with the difference that the density is spatiallf1=(X1,Y1) and p=(X2,Y2), S0 ¢(r1,r2)=¢(z,2,p). The
dependent now. So, we put by definitior(ry,r,) 2D regime is provided by the conditidp< & Moreover, the

_ ~ _ ~ conditionR.< ¢ is fulfilled in most experiments. As was dis-
—¢(rl)¢(r2)f(r1,r2) and "[/(rl’rZ)_(ﬁ(rl)(ﬁ(rZ)‘[/(r.l’r_Z)’ cussed in Sec. | the density profile is then governed by the
and, hencegp(ry,rp)=1+y(ry,rp) by Eq. (9). Substituting  ground state solutiomb,(2) of the one-particle Schrédinger

those expressions into Eqd.6) and(17) yields equation
[- ﬁZVZ/(Zm) —Eo+ Vex(2)]1¢o(2) =0,

because the second term in E§6) can be treated as a small
correction. Thus, we can put in the leading ordgfz)
X f droV(Iry = roffe(ry,r) =0, (33 =\h,pho(2); ¢o(2) is normalized to unity. By analogy with

ﬁZ
|:_ Envi_ M E0+Vext(r1)i|¢(r1) + ¢(r1)|¢(rl)|2
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standard perturbation theory, the chemical potential, as thgapping potential with ¢o(Z)=eXr{—22/(2|§)]/\s’|z\“‘°77, we

first correction toE,, can be found with the unperturbed
eigenfunctiong,. So, multiplying Eq.(16) by ¢y(z;) and
integrating byz; yield

= Nap f dpU(p), (39)
where by definition
Tio) = [ da0av(ir -2
X (21,25, p) Po(z) o(Z2)/N2p. (39)

In the same manner, one can multiply E@L7) by
bo(z1) Po(2p) and carry out the integration kzy andz,, which
results in the equation

204°VZ/(2m) + () = U(p)
for the function

(40)

“Wp) = J dzdz¥(2,,25,p) po(Z1) ho(Z)INpp.  (41)

Thus, we arrive at the system of equatiaid®) and (40),
which coincides with that of Eq$21) and(22) in homoge-
neous case if we put(k)=SdpU(p)e*® and perform the
Fourier transformation of E¢40). By the same method as in
Sec. Il A, we obtain the asymptotics for sufficiently large
[physically, for Re<<p<<¢, when only the first term domi-
nates in Eq(40)]

B(p) = 1 +INe"pl (V28 Imul (2mhPngp),  (42)

where by definition

“o(p) = f dzdz¢(2,25,p) bo(Z1) ho(Z)INp = 1 "'F'Z(P)-

(43)

The latter relation is due to Eq&) and (41).

In order to obtain the chemical potential in terms of the
3D scattering lengtta and the lengtH, of the trapping po-
tential, we use the following approximatiof58]

@(21,2,p) = CoB(NNapebo(21) po(2)) (44)

in the regionr <|,<¢, wherer=\p?+(z-2,)2 and ¢(r)
denotes the 3D solution of the Schrddinger equati®b)
with asymptotics for >R,

eQ(r)=1-alr. (45)

Here the crucial point is that the constadi# 1, which de-

have

2Ca
| \2m

\J

B(p)=C+ In[e”2p/(2421,)].

Comparing this relation with Eq42) yields

C=12mlua, (46)

and the chemical potential is given by E@9) with the
dimensionless parametarobeying the equation

1u+Inu=+2mlJa-y-In(16mn,pl2). (47)

This result foru is well consistent with relationé38) and
(39). Indeed, substitution of Eq44) with constant(46) into
Eq. (39) leads to Eq(29) provided that the relatio37) is
employed in conjunction with the approximation €x(z;
—22)2/(2@)]:1 due to the integration with the short-range
potential withR.<1,. In the leading order at small 2D den-
sities, expression&9) and(47) result in

1

_ Amhnyp
V2l Ja— y—-In(16mnypl2)

m

w (48)

This differs from the resulf35] of Petrov, Holzmann, and
Shlyapnikov only by the additional numerical terny -
—-ln 2=-1.2703... in the denominator. We note that the heal-
ing length in two dimensions takes the fogw 1/\4mn,pu,

which differs from that in three dimensions= 1/\4mna.

Due to the criterion 1\1@< ¢, the obtained results relate to
sufficiently small densities, for which<<1.
3. 1D regime

Contrary to the 3D and 2D nonideal Bose gases, there is
no Bose-Einstein condensate in one dimenidh59 in the

thermodynamic limit, because the long-wave fluctuations of
the phase break the off-diagonal long-range order. Neverthe-

less, one can speak about the quasiconderjddidf a size
of the 1D system is sufficiently small. Indeed, at zero tem-
perature the phase fluctuations are suppressed(lif,/I&)
<nypé [44,49, which can be fulfilled only at finite number
of particles. Herd, stands for the size im direction.

All calculations concerning the 1D quasicondensate in the
caseR.<|,< ¢ can be done in complete analogy with the 2D
inhomogeneous Bose gas considered in the previous subsec-

tion. The gas is strongly confined in they plane by the

harmonic trapping potential Mg,;= mwﬁpzl 2 with the length
l,=vAl(mw,), and remains homogeneous Ardirection. In

the regime involved, we can pup(p)=\n;pdo(p), dolp)

:ex;{—pZ/(ZIi)]/Ip\s‘”; is the ground state solution of the

termines the 2D behavior of the system. If we substitute Eqone-particle Schrodinger equation with the enegyfiw,.

(44) into Eq. (43) and take the integral, we arrive at a new
expression foip(p). This should be expanded with respect to
the dimensionless variabjg'l, and compared with Eq42).

Since the main contribution in that integral comes from the

asymptotics(45), one can use it instead of the function

Reasoning by analogy with Sec. Il B 2, we obtain

K=Ngp f dzU2), (49)

<pg°,;(r) itself. By performing this procedure for the harmonic where we introduce the even functi&(z):fJ(—z)
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— — interaction with an external fiel¢b), is to apply the varia-
U@ =fdP1dP2V(\(P1_P2) +2°) tional theorem. The latter can be formulated in general as
follows. If a functionf(x) obeys the functional equation
X P2,Z nyp.
®(p1,P2,2) do(p1) do(p2)/N1p SE[{F (O} AT/ SF(X) = 0 (59)
The 1D analogue of Eq40) is the equation
g c{ ) a with the functionalF depending on the functiof(x) and the
hed” parameter\, then the solution of Eq59) f(x)=fy(x,\) is
{ " “P (2)= U(Z) (50 also dependent on. Nevertheless, when calculating the de-
_ rivative of the stationary value of the functional with respect
for the function to A, we can take into consideration only the explicit depen-
_ dence on this parameter
(2) :JdPldpzl/’(PLPz,Z)%(Pl)¢O(Pz)/n10- dF[{Fo(% M)}, NN = GF{Fo(x N} AJ/ON. (60)
Equation(50) can be rewritten in the Lippmann-Schwinger This is obvious due to E¢59).
form at u— 0O (see discussion in Sec. 1IHA The variational theorer60) is still valid if the functional
contains two or more functions. In our case, the functions
~=(2) = 1 + (/A2 U z= 712 1 can be associated withh(x;) and ¢(x;,X,) involved in the
¢ (v )fdz U@)lz=z G energy functional15). Considering\" as the parameter of

the variational theorem, we come to the standard thermody-
namic relationdE/ IN=u' = u+E, One can rewrite this de-
rivative in terms of the energy per particde=E/N and the
o(2) = f dp1dpo@(p1,po,2) do(pr) Polp2)/Nip.  (52)  density of particles)E/ IN=4d(en)/on, which gives the rela-
tion e=(1/n)fgdn’ w(n’)+Ey. Then relationg29) and (47)
Equations(49) and(51) give the asymptotics foR,<z<¢ lead to

for the functiong(z), defining as

— _ 2 hz
P(z) =1+ m,U~|Z|/(2n1Dh ) (53 Eop = 2h2 NopU/M+ — |2, (61)
On the other hand, in the regian<|,<¢ we can use the
analogue of Eq(44) with u given by Eq.(47). In the same manner, we obtain
from Eq. (57) [60
o(p1.p22) = CeBNNodop) dolp) . (54) GO 2
which leads to the asymptotics after the integration in Eq. £1p= f nlD% lﬁ +h—2. (62)
%2 m 151 -vw/2all, ml;
H(2) ~C- C(\,,m _ |z|/I)a/Ip. (55) Equationg61) and(_62) give us the equilibrium value of t_he
energy(15) per particle in the 2D and 1D cases, respectively.
Comparing Eqs(53) and(55) yields In order to calculate the interaction energy with the help of
— the variational theorem, one can repla¢e-\V and differ-
C=1(1-ml2all,), (56) entiatee with respect ton at A=1. All we need to know is
the derivative of the 3D scattering length, which reads
24%n a 1
= D@ (57) (16,67
A—=m— 5 J PrieBmnIAavr). (63
which differs from Olshanii’'s resu[t47] through the numeri- N am 47Th

cal factors\m=1.772... in the denominator instead of the
constant 1.4603. introduced by him. We note that in the
paper[47] a, =2h/(Mw,) —\2I in our notation. One can

It is convenient to introduce one more characteristic length
[16], the positive parameteh

see that the criteria of appllcablllty of the obtained results Ja 3 )
| <& and 1h,p< ¢ impose the following restriction on the b=a-x —=| = | &% VeGP
P d 1Mp ON | y21
1D density:
So, we have
a 1 i
|2 < Nip < 5. (58) 2ﬂ'ﬁ2n2D 2\“"27le b
Epint= U ——|1-2], (64)
. —. . . m a
sinceé=1,/v2an,p in one dimension.
2
IV. THE KINETIC, INTERACTION, AND EXTERNAL P h nlDE(l _9) (65)
FIELD ENERGY OF THE TRAPPED BOSE GAS o, 12\7 a)

The simplest method for obtaining the values of the interwhere we use the approximatia’/(1-u)=u? in Eq. (64)
action energy(3), the kinetic energy4), and the energy of and restrict ourselves by the leading order in &H).

043622-9



A. YU. CHERNY AND J. BRAND PHYSICAL REVIEW A70, 043622(2004)

With the same method, replacing,;— A\Ve, (Which is V. VIRIAL THEOREM
equivalent tol —1/¢\) and differentiating, we arrive at the

. The virial theorem can be obtained immediately from the
external energy per particle

energy functiona(15) if we consider its variation in vicinity

2k 2 2 V’Eﬂ 2 _of the stationar)_/ statgground statgwith respect to the scal-
Eapen = 20_( z_ ) -, (66) ing transformation of the ground state functiogg and iy,
m 4\ a 4ml; obeying the generalized GP equatigh6) and(17). Namely,
we substitute into Eq. (15 the functions ¢(r,)

mnpa  #2 =a®2¢o(ar 1) andy(r ;) = a3yy(ar 1, ar ;). Replacing the vari-

€1Dext = St (67)  ables in the integrals; — ar, andr,— ar,, we notice that,

2 2
2m 1, 2mi, first, the last term in the functional equals to zero for any

and, second, the other terms can be written in terms of its

In the same manner, we hagg,=-mde/dm, which leads to k
stationary values

2 2 5
oy = 2N, 2 nz.;u{g( V2m, _ 2) E(a) = Py + End 4 Enl V(W) (72
4 . - .
1 m a Since the variation of the functional should be zero for any
V2, b h? small variations of the functions, we hav&la=0 at «
L R ami2’ (68) =1, which leads to
2Eyin = 2Eexi + Ein{ -1V’ ()] =0, (73
2 2 2
_hTmpb Anpa  h where the terms are given by Eq41)—(13). The value of
€1Dkin 2 2 2 (69) b ; .
m 15 2m |9 2mlp the last term corresponds to the interaction energy with the

potential +V'(r)=-rdV(r)/dr. In the case of the GP ap-

One can see that sum of the kinetic, external and interactiogroximation(36), one can simplify the last item in E73)
energies equals to the total energy, as it should be. Note th@l, means of Eq(37) and relation[6]

the developed formalism allows us to calculate the interac-
tion energy directly, starting from the expressi@i) and
using Eq.(37), since we have the analytic expressigag),
(46), (54), and (56) for the short-range behavior of the m
anomalous average.

We note that the ratib/a need not be small. In particular, The result takes a form
it is of order of ten for the realistic interaction potentials of 1
alkali atoms[48]. We stress that the term with the lendth = 4 _ 0) (12
appears in the mean interaction energy by virtue of the the Ein = 2 f dR|4(R)| Jdr[ V'(D]lesp()]
short-range two-body correlations at the distances of order of
a and in the mean kinetic energy by sufficiently large mo- =
menta of order op=#/a in the momentum distribution. In
the static structure factor, this region is rather difficult to be
measured experimentally. The density expansion metho
gives the value of the release energy that is defineiamf
the interaction and kinetic energies

i .
amh7a_ _ f dr47rr2[<p(°)(r)]2<2V(r) + rd\(;(rr)>.

0

2
27;? (3a—2b)de|¢(R)|4. (74)

If the potential is of the weak-coupling tydé8], one can
eglectb<a and arrive at the virial theorem obtained for the
o-function interaction potentigl3].
If the system is homogeneous in tlkey plane (the 2D

) 5 2( o 5 Bose gas of Sec. Ill BYor in the z direction (the 1D Bose
Eaprel = 2mh N2o , _ 2mh n2Du_( vaml, ) h , gas of Sec. Ill B3, it can be considered as confined by in-
m m 4\ a 4ml? finite walls in associated directions. Then one should be care-

(70) ful when deriving the virial theorem from E72), as all its
terms relate to the densityp/ o? or nyp/ a for the 2D or 1D

Bose gas, respectively. For this reason, we come to
#°n a #?
1D

Eiprel= ", A2 T 5 2 (71) 0—'82D ,
2m 21, 2mb; znzoa = 2e5pkin ~ 2&20ext™ €20ind~ V' (D], (79
D
As one can see, the parameles canceled and not involved
in the values of the release energy. Let us compare the values Je1p )
of the releasd70) and(71) and total energy61) and (62). Nip~— = 2e1pkin~ 2&1pextt €10ind ~ V' (1], (76)

. S . on
The energy of zero-point oscillation is involved in the release b

energy with the factor 1/2, as it should be for the harmonicThe interaction term in these equations can be easily calcu-
trap. The other terms would coincide in the standard GRated by analogy with Eq.74) but using Eqs(44) and(54),
approach, but we have obvious difference due to accountingespectively. It is not difficult to be convinced with the help
for the noncondensate contribution. In principle, the obtainedf Eqgs.(61) and (62) that the virial theorem$75) and (76)
corrections should be measurable in experiments. are fulfilled.
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One can also find a relation between the chemical poterrately were discussed in Refd.3,16,17,24, but these meth-
tial and the various parts of the energy. Let us multiply Eq.ods are appropriate only for the homogeneous Bose gas. The
(16) by ¢(x;) and integrate ovex;, and multiply Eq.(17) by = method proposed in this paper was shown to work as well in
¥(x,,%,) and also integrate ovex; and x,. Summing the inhomogeneous situations. Cigéguasi-1D and pancake

obtained expressions yields (quasi-2D geometries were considered as examples. Fur-
thermore, it was shown that the contribution of short-range
Ni = Eying + 2Exina + Eextt + 2Bexiat 2Eine. - (77)  correlations to the kinetic and release energies of a tightly

Here, Eo and Ey;,; are the condensate contributions in the rapped gas can be calculated within this scheme and that
external and kinetic energies given by the last terms in Eqdney are substantial. Interesting future applications of the
(12) and(13) , respectively, an&,,., andE,;, are associated propo_sed_ method may mclude_ the modification of the non-
with the noncondensate contributions, given by the residudin€arity in quasi-1D waveguide$62,63 and molecular
parts of these equations. One can easily see that the relati&}PSe condensates in optical lattices.

(77) is fulfilled with Eg,; andE,;,; corresponding to the last

terms in Eqs(66)<69) for the 2D and 1D Bose gases, re- ACKNOWLEDGMENTS

spectively. One can notice thag;,, could be negative for the
1D Bose gas, ib<<a/2 [see the first two terms in E¢69)].
Certainly, this is not a drawback of Ec(i_Gland(l?) it is
but due to the choice of anzaig(p)=vn;pd(p), which
leads to overestimation of the quasicondensate contribution
E.in1 in the 1D kinetic energy. Indeed, the Gaussian profile
Npldo(p)? relates to thetotal density of the 1D gas

<\ifT(r)\if(r)> but not to the “quasicondensate component” In general, the two-body density matrix can be expanded

|¢(p)|2. The latter is difficult to define accurately in the 1D in & complete set of its eigenfunctions
case, since there is no eigenvalue of the one-body density
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APPENDIX A: TWO-BODY WAVE FUNCTIONS IN THE
HARTREE-FOCK-BOGOLIUBOV APPROXIMATION

T e VI T (e VI (YD () = *
matrix that is proportional to the total number of particles. (W)W ()W) = 2 N, (%4, %)
Nevertheless, we stress that the total valu& g, is posi- e
tive, and the resultg65), (67), and (69) look quite reason- X @y, (X1, %5) . (A1)
able.

The eigenfunctions can be called two-body or pair wave
functions. If they are normalized to unity, it follows from Eg.
VI CONCLUSIONS (A1) that  [axyd(WT0q) W 06) W (%)W (%)) =N(N-1)
The main result of this paper are the generalized GP equé&2,.xNy,., 1-€., the sum of alN, , is the total number of
tions in the time-dependetit8) and(19) and stationary form  Pairs. Therefore, the non-negative quanhity, can be inter-
(16) and (17), which allow us to determine the interaction Preted as the mean number of the pairs in the dtatp),
term self-consistently for interaction potentials even containany pair being doubly taken.
ing a hard core. The method, which can be used for homo- Let us consider the homogeneous spinless Bose gas in the
geneous, strongly inhomogeneous quasi-low-dimensionaliFB approximation22,25. Within that approximation, the
and crossover regimes was derived within a general HFEwo-body wave functions can be easily calculafef]. The
framework. statistical average of any product of quantum operatbrs
The HFB method is a mean-field approximation, whichang 5 can be calculated with the Wick—Bloch—De Domini-
generally works well only for weak-coupling potenti@ls]. (s theorenf64], since the Hamiltonian is approximated by a
In order t'o extend the HFB s_cheme to hard-core pOte”t'alsquadratic formof the Bose operatorég and &, connected
the bare interaction potential is usually replaced by a renorgith initial operatorség anda, by the canonical Bogoliubov

: ; 2/ 3
malized pseudopotentiaV/(r) — (47:°/m) 5(r). However,  yansformations(see Appendix Extracting the c-number

such a replacement leads to an ultraviolet divergence angart\ifz\e’n_+{‘} and W= ng+ 9" and using that theorem
incorrect treatment of short-range correlations of the par! co 0 . '
ne can rewrite the four-boson average in the form

ticles. We have shown that the appropriate renormalizatior?
can be obtainedvithin the HFB scheme if, from the two- . e, F\af ., t'\sf 1
body density matrix, only the anomalous correlation function \ ¥'\R+ 2 J¥R=2 J¥| R == JW|{ R"+ =

o(X1,%) =(P(x1)¥(x,)) is retained. The anomalous correla- @
tion function can be interpreted as the wave function of two = 2z« (ry5(r/) + f d3pd3q[2n06(q/2 -p) 9 -
bosons in the condensate. Its short-range behavior is de- (2m)
scribed well in the proposed scheme at the cost of losing the + _
correct description of the long-range behavior. However, n(a’2 3p) n(g/2 3p)
long-range correlations are not needed for deriving the non- (2m) (2m)

linear term in the generalized GP approach, which instead is x exdiq - (R’ -R)], (A2)
determined by short-range correlations. Methods which can ) )

describe both the short- and long-range correlations accuwhere we put by definition'g(r)=1+(3(R+r/2)3R

] V2 cogp - 1)\2 cogp - 1)
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-r/2))/ny. Because the expansi@A2) is written in the ther-  Hartree-Fock-Bogoliubov method. We remember that the
modynamic limit, the sum in EqA1) becomes an integral. vacuum stat¢0) is defined asr,|0)=0 for any»+ 0, here the
The Bose-Einstein condensate manifests itself in presence gtiasiparticle creation and destruction opera’r@lwnd a,
S-functions in this integralnote that the first term in the can be introduced through the Bogoliubov transformation
RHS can be included in the integral with the help of the(f+#0)

s-functions. By comparing the representatioil) with that

of Eq. (A2), one can conclude the following. ar= >, '(Upa, +vp, &), (B1)
(i) The quantum numbers of the pair wave functions are v

the relative momentuny=p and the center-of-magsotal)

momentumu=q of two particles; all these functions belong A=l at+oa B2

to continuous spectrum and thus describe the scattering of f ; (U, @, + vr, @), (B2)

two bosons in the medium of the other bosons.

(i) The maximum eigenvalublo(NO—l)zNg with p=q  wheref and v denote discret¢multiindices. The sunk/
=0 corresponds to the state of two particles in the condenmeanss, ., and the Bose-operatod and &; create and
sate; its normalized eigenfuncti@s(r)/V can be interpreted destruct a particle in the eigenstafg(x) of the one-body
as a pair wave function of the condensate-condensate typgatrix <xi/’r(x')xif(x)>
Thus, the anomalous averagé(r)9(0)) can be associated
with the scattering part of the two-body wave function of the 13t (T "=
bosons in the condensdte]; in particular, it is responsible fdx (PHOTON S = N,
for the short-range spatial correlations of two bosons in the ) )
Bose-Einstein condensate. normalized ag dx|¢;(x)|?=1. Note that the set of eigenfunc-

(|||) The other macroscopic eigen\/ameNoﬁq with q tiOI':I\S including the normalized condensate functi¢5(x)
=+2p correspond to the two-body states with one particle in=(W¥(x))/\N, with Ny=n;, is complete and orthogonal,
the condensate and another one beyond the condensate; its
eigenfunctions 2 cogq-r/2)exdiq-R]/V are of the > () (') = S(x—x'), (B3)
condensate-noncondensate typ6]. The residuary nhonmac- f
roscopic eigenvalues(q/2+p)n(q/2-p) are related to the
noncondensate-noncondensate pairs with the two-body wave X
functionsy2cogp-r)exdiq-R]/V. fdx¢f(x)¢f’(x) =o(f-1'), (B4)

Note that the wave function of the condensate-condensate
type is not reduced to a product of two one-body wave funcyyhere we define the “discretes-function as
tions in the condensate, which equal to/¥/for the homo-
geneous Bose gas. This is obvious, as particles in the Bose- 1, f=0,

Einstein condensate interact with each other and with the 5(f):{0 fF2£0
other particles beyond the condensate. Another important ’ '
point is that all the other two-body wave functions are sym-From the Bose commutation relatiohds,at; ]=8(f—f’)

metrized plane wavegonsistent with the Born approxima- and[a, &t ]=8(f-f') and Eqs(B1) and(B2) we obtain at
tion) in the framework of the HFB method. This is evidently 70,

a disadvantage of the HFB scheme. As a consequence, we

always arrive at d|v§arg§nces for a hard-core potential when S '(UfVUL,,‘UfVU:rV) = 5(f-1), (B5)
evaluating the contribution of the condensate-noncondensate .

and noncondensate-noncondensate wave functions in the in-

teraction energy3). At the same time, the contribution of the ,

condensate-condensate “channel” should be finite in the in- > (Ugvsr, = v lpr,) =0, (B6)
teraction energy provided the anomalous averages are calcu- v

lated in a self-consistent manner. The generalization of th%y using the definition of the quasiparticle vacuum state and

expansion(A2) beyond the HFB approach and more detailequS_(Bl) and(B2), we can calculate the averages
discussions can be found in R¢15]. The pair wave func-

tion method of Ref[15] was generalized to the inhomoge- N =(aty V=St
neous systems in Reff68]. F(f, 1) = @) EV: UV (B7)

APPENDIX B: RELATION BETWEEN THE NORMAL O(f,F) = @BA) =S "Urpr. (B8)
AND ANOMALOUS TWO-BOSON AVERAGES ’ P

_Let us establish a relation between the normaloyr purpose is to find the relation between the normal
(9%(x1)9(x,)) and the anomalous averagé(x;)9(x,)) for F(f,f’) and the anomalou®(f,f’) averages for that state. In
the vacuum state, which describes the behavior of therder to simplify our calculations, we rewrite Eq81) and
N-body system at zero temperature, in the framework of th€B2) in the matrix notations
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)3 (3

Here the matrixX is composed of the matriJ);; =u; and
(V)jj=vjj. The columns contain the operaté@gsand al, and

(B9)

a, and&z, respectively. We use the standard notations for the

complex conjugate(v*)i,-:vi*j, transposedV');;=v;;, and

Hermitian conjugate matriXVT)ij:v;i. Then Egs(B7) and

(B8) read
F=V*VT=F, &=uV' =0T, (B10)
and Eqgs(B5) and(B6) can be written as
u v\/u" -vh\ (10
(v* U*)(—vT uT >:<o 1)' (BLD

where 1 denotes the identity matrix. Let us introduce the

composed matrices

1 0 10
03:(0 —1)’U+:<o o)’ (512
and rewrite Eq(B11) in the form
XoXTo3=1, (B13)

PHYSICAL REVIEW A 70, 043622(2004)

Employing the idea of Ref[65], in which the Hartree-
Fock-Bogoliubov method for Fermi systems was developed,
we define the matriX with the help of the notation@10)
and(B12)

1+F* -® )
®* -F/)
Due to Eq.(B13) and the relation(o,)?=0, we haveK?

=K. Rewriting the latter equation in terms of the matkx
and ®, we obtain two independent relations

O* P=F+F?

K=X'o30,X03= (

(B14)

F*®=0F, (B15)

which read in components
DD (f,H)D(F,f,) = >, 'F(fy, HF(f, ) + F(fy, fy),
f
(B16)
> 'F(f,f)®(f,T) = X '®(f, DF(f,f).  (B17)
f f

By using these equations, Eq83) and (B4), and the defi-

wherel stands now for the composed identity matrix, i.€., nition 1?}()():2/ a,¢,(x), one can rewrite Eqs(B16) and

the RHS of Eq.(B11). The matrix representatio(B13) is

(B17) in the coordinate representation

very convenient. For example, from this equation we have

X—l: O'3XTO'3, and

)end )% )

which reads in usual notations

2!f = 2 ,(uvfév - vaéI)Y
v

al=> "(ual-va,).

v

This equation together with the commutation relations lead$ e condensate depletion is small, one can neglect the sec-

to

> (Ul = v,yg0,) = S(F = 1),

2 ,(vauyf' - vava’) = 0;

14

which is nothing else but the matrix equatidfiocsXo3=1,
resulting from Eq(B13).

j dx(1(x) BT OND) Dx)) = (37 (x)) D(x,))

+ f dx(1(x) FOON I () (%)), (B18)
f dx( 70 F(x) {HX) F(x))
= f d(3(x) SONF (0 D(xp).  (BL9)

ond term in the RHS of EqB18), which is of the next order.
Thus, we obtain the expression

(97 (x) 9(xp)) = f dx(§1(x) ST NH) D).

(B20)

Note that Eq(B19) turns into identity in the approximation
(B20), and the same is valid for EqE€B15) and(B17).
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