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1 Introduction

Superfluidity in a neutral gas or liquid is not easily
defined but rather understood as a complex cluster of
phenomena. The associated properties may include fric-

c©Higher Education Press and Springer-Verlag Berlin Heidelberg 2012
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tionless flow through thin capillaries, suppression of the
classical inertial moment, metastable currents, quantized
circulation (vortices), Josephson effect (coherent tunnel-
ing), and so on (see, e.g., Refs. [1–6]). There is a close and
deep analogy between superfluidity in a neutral system
and superconductivity in a charged system [4, 6].

The 3D weakly-interacting Bose gas has all the su-
perfluid properties mentioned above, which can be in-
ferred from the existence of an order parameter repre-
sented by the wave function of the Bose–Einstein conden-
sate (BEC). By contrast, there is no BEC in a repulsive
1D Bose gas even at zero temperature in the thermody-
namic limit, provided that interactions are independent
of particle velocities [7, 8]. This can be easily proved us-
ing the Bogoliubov “1/q2” theorem [7]. This predicts a
1/q2 divergence at small momentum in the average oc-
cupation number nq for nonzero temperature and 1/q
divergence for zero temperature. Nevertheless, the exis-
tence of BEC is neither a sufficient nor necessary condi-
tion for superfluidity [1, 6], and a one-dimensional sys-
tem of bosons may be superfluid under some conditions.
However, whether a system is superfluid or not depends
very much on how superfluidity is defined, because one-
dimensional systems may exhibit only some but not all
of the superfluid phenomena.

Here we study superfluidity in an atomic gas of re-
pulsive spinless bosons in the 1D regime of very nar-
row ring confinement. The investigations focus mainly
on the metastability of the circulating-current states in
various regimes. However, we also discuss another im-
portant aspect of superfluidity relevant to a 1D system,
which is the non-classical moment of inertia or Hess–
Fairbank effect [9] and the quantization of circulation.
As we argue below, a perfect Hess–Fairbank effect and
quantization of circulation occur for the homogeneous
gas of repulsive spinless bosons in one dimension, while
metastability of currents does not, in general. Note that
the Hess–Fairbank effect is much easier to investigate
than metastability of current because of its “equilibrium”
nature [6, 10]. Indeed, it can be explained with the prop-
erties of the low-lying energy excitation spectrum of the
system due to the ability of the system to relax to the
ground state in the reference frame where the walls (i.e.,
the trapping potentials) are at rest (see Section 2). The
metastability of currents is a much more complicated
phenomenon to study, because at sufficiently large gas
velocities, the system is obviously not in the ground state
but in a metastable state. In order to study such an ef-
fect, one needs to understand transitions between states,
which presents a more intricate problem.

Ideally, in order to study the decay of ring currents in
a controlled manner, the gas should be kept in a ring or
a torus-like geometry with defined defects. The defects
may cause transitions to the states of lower energies, thus
leading to energy dissipation, related to a friction force;

this is called the drag force. The question of metastabil-
ity then becomes equivalent to the drag force of a small
and heavy impurity that is dragged through the rest-
ing gas. In the scope of this topical review, we consider
mainly infinitesimal impurities and calculate the lowest
order terms in linear response of the interacting gas to
perturbation by the impurity. The authors of Ref. [11]
followed a different approach by calculating the effects
of finite impurities on the flow of a weakly-interacting
Bose–Einstein condensate.

In spite of rapid progresses in experimental techniques
along this line [12–14], so far no conclusive experimen-
tal data on the drag force or metastability of ring cur-
rents in the 1D Bose gas is available, and thus, this is
one of the outstanding fundamental questions remain-
ing about the properties of ultra-cold Bose gases [2]. Not
long ago, an experiment along this line was carried out
[15], in which the propagation of spin impurity atoms
through a strongly interacting one-dimensional Bose gas
was observed in a cigar-shaped geometry. The motion
of the center-of-mass position of the wave packet is de-
scribed fairly well by the drag force, calculated with the
dynamic structure factor of the Bose gas in the regime
of infinite boson interactions. In the recent experiment
of Ref. [16], the dynamics of light impurities in a bath of
bosonic atoms was investigated and the decay of breath-
ing mode oscillations was observed. In another line of
experiments, atoms were subjected to a moving optical
lattice potential and the momentum transfer was mea-
sured [17–19]. This implies that one can experimentally
obtain the drag force of a specific external potential act-
ing on the gas. Experiments were also done with ultra-
cold atoms in random and pseudo-random potentials.
The direct observation of Anderson localization was re-
ported in Refs. [20–22]. In particular, spreading of a 1D
Bose gas in artificially created random potentials was ex-
perimentally investigated [20]. Below we show that the
superfluid–insulator phase diagram of such a system can
be obtained by calculating the drag force.

The notion of drag force turns out to be theoretically
fundamental, because it generalizes Landau’s famous cri-
terion of superfluidity. According to Landau, an obstacle
in a gas, moving with velocity v, may cause transitions
from the ground state of the gas to excited states lying
on the line ε = pv in the energy–momentum space. If all
the spectrum is above this line, the motion cannot excite
the system, and it is thus superfluid. However, it is also
possible that even when the line intersects the spectrum,
the transition probabilities to these states are strongly
suppressed due to boson interactions or to the specific
kind of external perturbing potential. In this case, the
drag force gives us a quantitative measure of superfluid-
ity.

This paper is organized as follows. The basic model of
the 1D Bose gas considered in this paper is introduced



56 Alexander Yu. Cherny, Jean-Sébastien Caux, and Joachim Brand, Front. Phys., 2012, 7(1)

in Section 2. In the subsequent section, we study the
Hess–Fairbank effect and its relation to the Landau cri-
terion of superfluidity. In Section 3, we derive an expres-
sion for the drag force through the dynamic structure
factor within linear response theory and show that the
notion of the drag force generalizes the Landau criterion
of superfluidity. The values of the drag force in various
limiting regimes are calculated in Section 4. In the sub-
sequent section, the Luttinger liquid theory is exploited
to describe the drag force at small impurity velocities.
An exact method for obtaining the drag force for a finite
number of bosons, exploiting the algebraic Bethe ansatz,
is briefly discussed in Section 5.3. In Section 5.4 we con-
sider a simple interpolation formula for the DSF, which
works for arbitrary strength of the interparticle interac-
tions. In the subsequent section, we show that another
approach to the one-dimensional Bose gas, the theory of
phase slip transitions [23], reproduces the same power-
law behaviour for the drag force as the Luttinger liquid
theory does. In Section 5.6, the drag force in the limit of
infinite interactions is obtained analytically beyond lin-
ear response theory. The decay of ring currents is exam-
ined in Section 6. In Section 7.1, the zero-temperature
phase diagram is obtained for the superfluid–insulator
transition of the one-dimensional Bose gas in moving
shallow lattices for arbitrary values of velocity, filling
factor, and strength of boson interactions. The motion
of the 1D Bose gas in random potentials and the re-
lated phase diagram at zero temperature are considered
in Section 7.2. Finally, in the conclusion the results and
prospects are briefly discussed.

2 Landau criterion of superfluidity and Hess–
Fairbank effect

Model — We model cold bosonic atoms in a waveguide-
like micro trap by a simple 1D gas ofN bosons with point
interactions of strength gB > 0 (i.e., the Lieb–Liniger
(LL) model [24])

H =
N∑

i=1

− �
2

2m
∂2

∂x2
i

+ gB
∑

1�i<j�N

δ(xi − xj) (1)

and impose periodic boundary conditions on the wave
functions. The strength of interactions can be measured
in terms of the dimensionless parameter γ ≡ mgB/(�2n),
where n is the linear density and m is the mass. In
the limit of large γ, the model is known as the Tonks–
Girardeau (TG) gas [25, 26]. In this limit, it can be
mapped onto an ideal Fermi gas since infinite contact
repulsions emulate the Pauli principle. In the opposite
limit of small γ, we recover the Bogoliubov model of
weakly interacting bosons. For an overview of theoreti-
cal approaches to the one-dimensional Bose gas, see the
recent review [27].

Landau criterion — In the LL model the total mo-
mentum is a good quantum number [28], and periodic
boundary conditions quantize it in units of 2π�/L, where
L is the ring circumference. Classification of all the ex-
citations can be done [29] in the same manner as for the
Tonks–Girardeau gas of non-interacting fermions (γ →
+∞). Thus, in order to create an elementary particle-like
excitation, one needs to add a quasimomentum beyond
the occupied Fermi segment. By contrast, for a hole-like
excitation, one needs to remove a quasimomentum lying
inside the Fermi segment. All the excitations can be con-
structed from the above elementary excitations. Due to
the conservation of total number of particles, the number
of particle-like excitations coincides with that of hole-like
excitations. The low-lying spectrum of N = nL bosons
as shown in Fig. 1 has local minima [30] at the supercur-
rent states I (I = 0, 1, 2, . . .) with momenta pI = 2πn�I

and excitation energies

εI = p2
I/(2Nm) (2)

These correspond to Galilean transformations of the
ground state with velocities vI = pI/(Nm). The min-
ima do not depend on interactions and tend to zero in
the limit of large system size at constant density. The
first supercurrent state is also called the umklapp exci-
tation [24] by analogy with periodic lattices because it
can be reached from the ground state by imparting the
momentum �Kr to each particle, where Kr = 2π/L is
the reciprocal wave vector in the ring geometry. As ex-
plained above, this changes the total momentum while
preserving the internal state of the system.

Suppose that the gas is put into rotation with linear
velocity vI , and after that, is braked with an artificial
macroscopic “obstacle”, e.g., created by a laser beam
[31]. In the reference frame where the gas is at rest,
the obstacle moves with the velocity vI . In a superfluid
we expect to see no energy dissipation, and the drag
force is zero (the current is persistent). Otherwise one
can observe decay of the current. It follows from energy
conservation that the transitions from the ground state
caused by the moving obstacle with velocity v lie on the
line ω = vk in the energy–momentum plane. According
to Landau, if the excitation spectrum lies above this
line, the motion cannot excite the system, which is then
superfluid. As is seen from Fig. 1, the Landau critical
velocity (when the line touches the spectrum) equals
vc = v1/2 = �π/(mL). This implies that any supercur-
rent state with I � 1 is unstable since vI > vc. However,
in 3D we also have similar supercurrent states, which
apparently leads to the paradoxical absence of current
metastability. The solution to this is that we need to
consider not only the spectrum but also probabilities of
excitations. Below we argue that in the 3D case, the
probability to excite supercurrents is vanishingly small,
while in the 1D case it depends on the strength of bosonic



Alexander Yu. Cherny, Jean-Sébastien Caux, and Joachim Brand, Front. Phys., 2012, 7(1) 57

Fig. 1 Schematic of the excitation spectrum of the 1D Bose
gas in a perfectly isotropic ring. The supercurrent states I lie on
the parabola �2k2/(2Nm) (dotted line). Excitations occur in the
shaded area; the discrete structure of the spectrum is not shown
for simplicity. The blue (dark) area represents single particle–hole
excitations [29]. Motion of the impurity with respect to the gas
causes transitions from the ground state to the states lying on the
straight (red) line. Reproduced from Ref. [32], Copyright c© 2009
The American Physical Society.

interactions.
Hess–Fairbank effect — When the walls of a toroidal

container are set into rotation adiabatically with a small
tangential velocity vD, a superfluid stays at rest while
a normal fluid follows the container. This effect leads
to a nonclassical rotational inertia of superfluid systems,
which can be used to determine the superfluid fraction
[6, 10]. For the 1D Bose gas, rotation of the annular trap
amounts to shifting the excitation spectrum to ε − vDp

as shown in Fig. 2. It is assumed that an unspecified
relaxation mechanism allows the system to relax to the
ground state in the frame where the trap is at rest. The
low-lying LL excitation spectrum is a convex function of
momentum for 0 � p � p1 [29], and, hence, the momen-
tum zero state remains the ground state for |vD| < vc.
This leads to the Hess–Fairbank effect for the 1D Bose
gas for arbitrary repulsive interactions γ > 0 [33, 34]. Ac-
cording to this equilibrium property which is completely
determined by the low-lying energy spectrum [1], the 1D
Bose gas has a 100% superfluid fraction and zero rota-
tional inertia at zero temperature. The same results were
obtained by using instanton techniques [35] and within
Luttinger liquid theory for a finite number of bosons [34,
36].

It is the convexity of the low-lying excitation spec-
trum between the supercurrent states (see Fig. 2)
that allows us to obtain this result without nu-
merical calculations. The minima of energy can be
reached only in the supercurrent states [see Fig. 2(b)],
whose energy are known analytically with Eq. (2). In
the usual way (see, e.g., Ref. [34]), the superfluid
component can be defined and obtained numerically
through the second derivative of the phase ϕ in the
twisted boundary conditions ψ(x1, . . . , xj +L, . . . , xN ) =
exp(iϕ)ψ(x1, . . . , xj , . . . , xN ), j = 1, . . . , N , imposed on

the wave functions. We emphasize that this procedure
is equivalent to the method used in this paper, because
the Galilean transformation implies a phase gradient of
the wave functions observed in the frame of the mov-
ing walls, and the gradient leads to twisted boundary
conditions. It is also consistent with the definition of
the superfluid component in three dimensions through
the Fourier-transformed autocorrelation function of the
transverse current [6, 10].

Fig. 2 (a) Low-lying excitation spectrum εmin(k) for N = 10
particles for 1D repulsive bosons. At γ � 1, the low-lying spec-
trum verges towards that of the ideal Bose gas, which lies on the
straight segments between points I = 1, 2, 3, · · ·. (b) Quantiza-
tion of current velocity for 1D repulsive bosons under influence of
a moving trap. Shown are the low-energy excitations of the 1D
Bose gas in the moving frame εmin(k) − vD�k, calculated from
the Bethe-ansatz equations [24] for different values of the coupling
strength (compare with εmin(k) of Fig. 1). Inset: The velocity of
the gas at equilibrium changes abruptly at values of driving veloc-
ity vD/vc = 1, 3, 5, . . ., since the gas occupies the state with lowest
energy. In particular, the system is at rest when the driving ve-
locity is less than vc = vF/N (perfect Hess–Fairbank effect). Here,
kF ≡ πn, vF = �kF/m, and vF ≡ �

2k2
F/(2m). Reproduced from

Ref. [38], Copyright c© 2010 Siberian Federal University.

Note that the Bose–Fermi mapping for the TG gas
implies that periodic boundary conditions for the Bose
gas only translate into periodic boundary conditions for
the Fermi gas for odd N but into antiperiodic ones for
even N [37], in contrast to the true Fermi gas with pe-
riodic conditions. One can see that for even N , there is
no Hess–Fairbank effect in the true Fermi gas (although
the TG gas always shows the Hess–Fairbank effect). This
is due to the instability of fermions at the Fermi point,
which results from the degeneracy of the ground state
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for an even number of fermions.

3 Drag force as a generalization of Landau’s
criterion of superfluidity

In order to study frictionless motion, let us consider an
impurity of massmi, moving with velocity v in a medium
of particles. For the major part of this topical review,
we will treat the interaction between the impurity and
Bose gas perturbatively in linear response theory and
thus reduce the problem to calculating properties of the
integrable 1D Bose gas, although in general the system
will lose integrability when adding an impurity. Using
Fermi’s golden rule, one can easily show (see Appendix
A) that the resulting friction leads to an energy loss per
unit time given by

Ė = −
∫

dDq

(2π)D−1
|Ṽi(q)|2n

· (q · v − �q2

2mi
)S(q, q · v − �q2

2mi
)

N
(3)

Here Ṽi(q) is the Fourier transform of the interaction po-
tential Vi(r) between the impurity and the particles, D is
the spatial dimension, n is the density of particles (num-
ber of particles per D-dimensional volume), and S(q, ω)
is the dynamical structure factor (DSF) of the medium.
It is given by the definition [5]

S(q, ω) = Z−1
∑
n,m

e−βEm |〈m|δρ̂q|n〉|2δ(�ω−En +Em)

(4)

with Z =
∑

m exp(−βEm) being the partition func-
tion and β being the inverse temperature. Here δρ̂q =∑

j e−iq·rj −NΔ(q) is the Fourier component of the op-
erator of the density fluctuations, Δ(q) = 1 at q = 0 and
Δ(q) = 0 otherwise. At zero temperature, the structure
factor takes a simpler form

S(q, ω) =
∑

n

|〈0|δρ̂q|n〉|2δ(�ω − En + E0) (5)

The DSF relates to the time-dependent density correla-
tor through the Fourier transformation

S(q, ω) = N

∫
dtdDr

(2π)D�
ei(ωt−q·r)〈δρ̂(r, t)δρ̂(0, 0)〉/n

(6)

where δρ̂(r, t) ≡ ∑
j δ(r − rj(t)) − n is the operator of

the density fluctuations. The DSF obeys the f -sum rule
[5]∫ +∞

−∞
dω ωS(q, ω) = Nq2/(2m) (7)

The drag force is defined by the formula Ė = −Fv · v.
In this paper, we will use the expression (3) for a heavy

impurity v � �q/mi in one dimension. It yields for
the drag force Fv =

∫ +∞
−∞ dq q |Ṽi(q)|2S(q, qv)/L. Us-

ing the properties of the DSF S(q, ω) = S(−q, ω) =
eβ�ωS(q,−ω), which follow from its definition (4), we
obtain

Fv =
∫ +∞

0

dq q |Ṽi(q)|2S(q, qv)[1 − exp(−β�qv)]/L

(8)

This is the most general form of the drag force within
linear response theory. The form of the impurity interac-
tion potential can be of importance as, e.g., in the cases
of shallow lattices and random potentials discussed in
Sections 7.1 and 7.2, respectively. When the impurity
interaction is of short-range type, we can replace it with
good accuracy by a contact interaction Vi(r) = giδ(x),
which leads to Ṽi(q) = gi and yields at zero temperature
[39]

Fv ≡ 2g2
i nm

�2
fv = g2

i

∫ +∞

0

dq qS(q, qv)/L (9)

In the first equality, we introduce the dimensionless drag
force fv with the help of the “natural” unit 2g2

i nm/�
2.

Its physical nature will be discussed below in Sections
4.1 and 5.6.

The notion of drag force generalizes the Landau cri-
terion of superfluidity. Indeed, the integral in Eq. (9) is
taken along the line ω = qv in the ω–q plane. If the exci-
tation spectrum lies completely above the line then the
integral vanishes, as one can see from the DSF definition
(5). On the other hand, the integral can be infinitesimally
small or vanish even if the spectrum lies below the line
but the excitation probabilities, given by the correspond-
ing matrix elements Ṽi(q)〈0|δρ̂q|n〉, are suppressed. The
drag force can vanish even if the system is not super-
fluid in principle, but excitations are not accessed with a
given potential. This happens when the matrix elements
〈0|δρ̂q|n〉 are not small but the Fourier transform of the
impurity potential Ṽi(q) takes non-zero values only in a
finite region of q-space. We consider such an interesting
case in Sections 7.1 and 7.2 below.

Thus, determining the drag force within linear re-
sponse theory is reduced to the problem of calculating
the dynamic structure factor. Below we consider various
approximations for the dynamic structure factor and the
associated drag force.

4 The drag force in different regimes

4.1 Large impurity velocities

Let us consider the case of contact interactions with
the impurity, Vi(r) = giδ(x). At large impurity velocity
v � �πn/m, the main contribution to the integral in Eq.
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(9) comes from the high momentum region of the DSF,
which can be calculated analytically [40]. Indeed, at large
velocities, the momentum transfer from the impurity to
the particles is big enough to neglect the interparticle in-
teractions. Then one can use the DSF values of the ideal
gas [5, 40]

S(q, ω) =
∑

p

np(1 ± np+q)δ
(

�ω − �
2q2

2m
− �

2pq

m

)
�

∑
p

npδ

(
�ω − �

2q2

2m
− �

2pq

m

)
(10)

Here np ≡ 〈a†pap〉 is the average occupation numbers of
particles, and the plus is taken for bosons and the mi-
nus for fermions. The second equality in Eq. (10) is due
to the large momentum �q � mv � �πn, which leads
to npnp+q � 0 for arbitrary values of p. Substituting
Eq. (10) into Eq. (9) yields the value of the drag force
2g2

i mn/�
2, which can be used as the force unit.

It is not difficult to see that this result is valid be-
yond linear response theory, given by Eq. (9). Indeed, at
sufficiently large particle velocity, the initial particle mo-
mentum can be neglected during the scattering. Then in
the reference frame where the impurity remains at rest,
the relative particle momentum is �q � mv. Therefore,
the reflection coefficient is determined by the squared ab-
solute value of the scattering amplitude in the Born ap-
proximation m2g2

i /(�
4q2). Each particle, being reflected,

transfers momentum 2�q. The total number of scattered
particles per unit time is nv = n�q/m. The product of
the last three quantities yields the value of momentum
transfer per unit time, that is, the drag force. This quan-
tity, independent of the wave vector, is nothing else but
the limiting value of the drag force, obtained above.

4.2 The Tonks–Girardeau regime

Let us first investigate the drag force for the TG gas
(γ → +∞), having the same structure factor as the ideal
Fermi gas. The DSF at zero temperature is well-known
in the thermodynamic limit [41, 42]

S(k, ω)
εF
N

=
kF

4k
(11)

for ω−(k) � ω � ω+(k), and zero otherwise. Here
ω±(k) = �|2kFk ± k2|/(2m) are the limiting dispersions
that bound quasiparticle–quasihole excitations (see Fig.
4). By definition, kF ≡ πn and εF ≡ �

2k2
F/(2m) are

the Fermi wave vector and energy of the TG gas, re-
spectively. As follows from Eq. (11) for the DSF, the
transition probability from the ground state is inversely
proportional to the momentum transfer but does not de-
pend on the excitation energies within the borders ω±(k).
Simple integration in Eq. (9) then yields

fv =

{
v/vF, 0 � v � vF

1, v � vF
(12)

where vF ≡ �πn/m is the sound velocity in the TG
regime. The result is represented in Fig. 3(a). The TG
gas is obviously not superfluid.

Fig. 3 The dimensionless drag force (9) versus impurity velocity
in various approximations, c is the speed of sound. (a) Tonks–
Girardeau and Bogoliubov regimes. (b) The random phase ap-
proximations (RPA) at non-zero temperatures. The curve becomes
smoother when the temperature grows.

4.3 The drag force in the Bogoliubov regime

The opposite regime to the TG gas is the limit of weak
interactions γ 	 1 (the Bogoliubov regime). The crucial
point in Bogoliubov theory [43] is the developed Bose–
Einstein condensate. In spite of the absence of Bose–
Einstein condensation in one dimension [8, 44], the up-
per dispersion curve ω+(k) is well described at small γ
[29] by the Bogoliubov relation

�ωk =
√
T 2

k + 4TkεFγ/π2 (13)

where Tk = �
2k2/(2m) is the free-particle energy spec-

trum. The Bogoliubov theory also yields the correct val-
ues of the ground state energy and chemical potential.
This paradox can be explained [45] by a strong singu-
larity of the DSF near ω+ in the Bogoliubov regime.
As a result, it is localized almost completely within a
small vicinity of the upper branch. This tendency can be
seen even at γ = 10 (Fig. 4). Thus, the behavior of the
DSF simulates the δ-function spike, which appears due
to the Bose–Einstein condensate. One can simply put
SBog(k, ω) = Cδ(ω − ωk) and determine the constant C
from the f -sum rule (7)
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SBog(k, ω) = N
Tk

�ωk
δ(ω − ωk) (14)

The drag force is then obtained analytically: it is a
step function

fv =

{
0, 0 � v � c

1, v � c
(15)

shown in Fig. 3(a). The sound velocity in the Bogoliubov
regime is given by c = vF

√
γ/π. At non-zero tempera-

tures the result does not change. This result was first
obtained in Ref. [39] by means of the GP equation. Note
that the supersonic impurity motion in three dimensions
was earlier studied by the same method in Ref. [46].

Fig. 4 Numerical values of the DSF (4) for the coupling pa-
rameter γ = 10 [60]. The dimensionless value of the rescaled
DSF S(k, ω)εF/N is shown in shades of gray between zero (white)
and 1.0 (black). The upper and lower solid (blue) lines represent
the dispersions ω+(k) and ω−(k), respectively, limiting the single
“particle–hole” excitations in the Lieb–Liniger model at T = 0.
The dispersions are obtained numerically by solving the system
of integral equations [29]. The gray scale plot of the DSF demon-
strates that the main contribution to the DSF comes from the
single particle-hole excitations, lying inside the region ω−(k) �
ω � ω+(k) (see also Fig. 1). Only one point at k = kG, shown in
full (red) circle, contributes to the integral when the perturber is a
shallow cosine potential with a reciprocal vector kG. Reproduced
from Ref. [32], Copyright c© 2009 The American Physical Society.

4.4 The linear approximation near the Tonks–
Girardeau regime

For finite γ, the model can also be mapped onto a Fermi
gas [37] with local interactions, inversely proportional to
gB [41, 42, 47, 48]. Using the explicit form of the interac-
tions, one can develop the time-dependent Hartree–Fock
scheme [41, 42] in the strong-coupling regime with small
parameter 1/γ. Approximations of the linear response
functions on this level are known as Random Phase ap-
proximation (RPA) with exchange or generalized RPA
[4, 49]. The scheme yields the correct expansion of the
DSF up to the first order [41, 42]

S(k, ω)
εF
N

=
kF

4k

(
1 +

8
γ

)
+

1
2γ

ln
ω2 − ω2−
ω2

+ − ω2
+O

(
1
γ2

)
(16)

for ω−(k) � ω � ω+(k), and zero elsewhere. The symbol
O(x) denotes terms of order x or smaller. The limiting
dispersions in the strong-coupling regime take the form

ω±(k) =
�|2kFk ± k2|

2m

(
1 − 4

γ

)
+O

(
1
γ2

)
(17)

From the linear part of the dispersion (17) at small
momentum ω±(k) � ck, we obtain the well-known re-
sult [29, 34] for the sound velocity at zero temperature
c = vF(1 − 4/γ) +O(1/γ2).

In the same manner as in Section 4.2, we derive from
Eqs. (9) and (16)

fv =

⎧⎪⎨⎪⎩
[
1 + 8

ln(v/c)
γ

]
v

c
, 0 � v � c

1, v � c

(18)

As expected, the linear approximation (18) works
badly for small values of impurity velocity. This is due
to the anomalous behaviour of the DSF within the lin-
ear approximation in vicinity of the umklapp excitation
point at ω = 0, k = 2kF. Indeed, Eq. (18) leads to un-
physical negative values of the drag force at sufficiently
small impurity velocities. For this reason, we need a more
careful examination of the drag force in this regime.

5 Theoretical approaches

5.1 Random phase approximation near the Tonks–
Girardeau regime

The DSF in the RPA was calculated and described in
details in Section 4.2 of Ref. [42]. The RPA is based on
the Hartree–Fock scheme, which is appropriate at suf-
ficiently large interactions between bosons γ > 8. The
equation for the drag force within the RPA is derived in
Appendix B.

The RPA approximation has some advantages. It al-
ways gives positive values of the drag force and is appli-
cable at non-zero temperatures. The results are shown
in Fig. 3(b). The RPA scheme can be extended to non-
homogeneous systems beyond the local density approxi-
mation [50]. However, the RPA scheme also works badly
in the vicinity of the umklapp excitation. As a conse-
quence, the formula for the drag force (B7), obtained
within the RPA, does not reproduce the correct power-
law behaviour at small velocities (see discussion in Sec-
tions. 5.2 and 5.4 below.). Another disadvantage of the
scheme is that the drag force as a function of velocity
has an unphysical peak near v = c at zero temperatures,
which becomes quite pronounced for γ � 15. This is an
apparent artifact of RPA. In the next sections we con-
sider much better approximations that work for all values
of the interaction strength and impurity velocities.
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5.2 Luttinger liquid theory

Luttinger liquid theory allows us to correctly describe the
low-energy excitations of a 1D system of particles whose
interactions are independent of the velocities. It faith-
fully handles the nonlinear effects of these interactions
and yields values of the DSF at low energies for arbi-
trary coupling strength [30, 39] and thus can be used to
calculate the drag force at small values of the impurity
velocity.

The behaviour of the DSF in the vicinity of the umk-
lapp excitation is related to the long-range asymptotics
of the time-dependent density–density correlator. The
asymptotics for kFx� 1 and t � x/c

〈δρ̂(x, t)δρ̂(0, 0)〉
n2

� − K

4π2n2

(
1

(x− ct)2
+

1
(x+ ct)2

)
+Ã1(K)

cos(2kFx)
n2K(x2 − c2t2)K

(19)

can be justified by generalizing Haldane’s method [30]
or using perturbation theory [51, 52]or quantum inverse
scattering method [53] or conformal field theory [54, 55].
The first two terms are related to the behaviour of the
DSF in vicinity of ω = 0, q = 0, while the third term
is related to the umklapp excitations. Substituting the
third term of Eq. (19) into Eq. (6) yields the DSF in the
vicinity of the “umklapp” point (k = 2kF = 2πn, ω = 0)
[39]

S(k, ω)
N

=
nc

�ω2

(
�ω

mc2

)2K

A1(K)
(

1 − ω2
−(k)
ω2

)K−1

(20)

for ω � ω−(k), and zero otherwise. Within Luttinger-
liquid theory, the dispersion is linear near the umklapp
point: ω−(k) � c|k−2πn|. By definition, K ≡ �πn/(mc)
is the Luttinger parameter. For repulsive bosons, the
value of parameter K lies between 1 (TG gas) and +∞
(ideal Bose gas). The value of the Luttinger parameter
in the strong-coupling regime

K = 1 + 4/γ +O(1/γ2) (21)

is derived with the expression for the sound velocity ob-
tained in Section 4.4. The coefficients in Eqs. (19) and
(20) are related by [56]

Ã1(K) =
Γ 2(K)

2π

(
2K
π

)2K

A1(K) (22)

with Γ (K) being the gamma function. The coefficient
A1(K) is non-universal, and is explicitly known for the
Lieb–Liniger model [57, 58]. We will make use of its value
in two limiting cases: A1(K) = π/4 at K = 1 and
A1(K) � 41−3K exp(−2γcK)π/Γ 2(K) for K � 1 [39,
56], where γc = 0.5772 . . . is the Euler constant.

By comparing the first-order expansion (16) in the
vicinity of the umklapp point with Eq. (20) and us-
ing the expansion (21), one can easily obtain [45] the
model-dependent coefficient at large but finite interac-
tions when K − 1 	 1

A1(K) =
π

4

[
1 − (1 + 4 ln 2) (K − 1)

]
+O

(
(K − 1)2

)
(23)

Using the DSF (20) predicted by Luttinger theory and
equation (9) for the drag force, we arrive at the expres-
sion for the drag force at small velocities v 	 c [39]

Fv =
√
π

Γ (K)
Γ (K + 1/2)

A1(K)
g2
i n

2

�v

(
2K

v

c

)2K

(24)

In the TG regime, this formula yields the same values of
the drag force as Eq. (12). Equation (24) gives us the
universal exponent of the power-law behaviour of the
drag force at small velocities: Fv ∼ v2K−1. The same
result was obtained in Ref. [36]. While the non-universal
coefficient A1(K) is now known for arbitrary strength of
interactions [57–59], its actual expression is too unwieldy
to be considered here. In Section 5.4 we prefer to con-
sider another approach, which allows us to determine it
approximately.

5.3 The algebraic Bethe ansatz and ABACUS

The exact integrability of the Lieb–Liniger model now
permits the direct numerical calculation of dynamical
correlation functions such as the DSF [60] for systems
with finite numbers of particles using the ABACUS al-
gorithm [61]. The strategy consists in using the Lehmann
representation (5). The eigenstates themselves are con-
structed by the Bethe Ansatz. The state norms [62, 63]
and matrix element of the density operator [64, 65] be-
ing exactly known, the sum over intermediate states can
be taken starting from the dominant few-particle states
and let run until a satisfactory saturation of sum rules
is achieved. The results for the DSF take the form il-
lustrated in Fig. 4. For generic values of γ, most of the
signal is concentrated between the dispersions ω+(k) and
ω−(k) of single particle/hole (Type 1/2 in Lieb’s nota-
tion) excitations. The signal is by construction identi-
cally zero below ω−(k) (since no eigenstates are found
there); above ω+(k), the signal is carried by multiple
particle–hole excitations and is very weak in view of the
small matrix elements of the density operator between
these states and the ground state.

We use data for N = 150 particles (γ = 5 and 20),
N = 200 (γ = 1) and N = 300 (γ = 0.25). The f -
sum rule saturations at k = 2kF were 99.64% (γ = 20),
97.81% (γ = 5), 99.06% (γ = 1) and 99.08% (γ = 0.25),
the saturation getting better at smaller momenta. The
drag force is computed from the numerical DSF data in
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the following way. Since the DSF in finite size is given
by discrete but densely distributed δ-function peaks, we
consider the integral

F I(v) ≡ g2
i

L

∫ ∞

0

dq
∫ qv

0

dωS(q, ω)

=
g2
i

�L

∫ ∞

0

dq
∑

n

|〈0|δρ̂q|n〉|2Θ(�qv−En+E0)

(25)

whose derivative with respect to v simply gives the drag
force (9). Here Θ is the Heaviside step function. The inte-
gral in ω conveniently gets rid of all energy δ-functions in
the expression for the DSF, and this integrated quantity
is readily computed without need for smoothing using
the raw ABACUS data for the DSF. The derivative with
respect to v can then be taken numerically by fitting an
interpolating polynomial to the data points for F I(v) in
the vicinity of the velocity for which the drag force needs
to be calculated. The resulting data for the drag force are
illustrated in Fig. 5(a).

The advantage of this method is that the reliability of
the results is more or less independent of the value of the
interaction parameter, in the sense that states and ma-
trix elements can be individually constructed irrespective
of what γ is. The remaining issues are the distribution of
correlation weight among the excitations, and how this
affects the speed of convergence. The limit of very small
γ is the easiest to treat, since only very few states in
the vicinity of the Type 1 mode are of importance. The
DSF then becomes almost a δ-function in the Type 1
dispersion relation, and the drag force tends to the step
function as expected in this limit. The opposite case of
infinite γ is also straightforward since then only single
particle–hole excitations have non-negligible matrix ele-
ments, the drag force becomes a constant between Type
1 and 2 dispersions, and the drag force acquires a con-
stant slope. For interaction values between these two ex-
tremes, many eigenstates must be summed over for good
convergence, and the DSF takes on a nontrivial lineshape
making the drag force take the positive-curvature shapes
in Fig. 5(a).

5.4 An effective approximation for the dynamic
structure factor and drag force

In Refs. [45, 66], an interpolating expression was sug-
gested for the DSF:

S(k, ω) = C
(ωα − ωα

−)μ−

(ωα
+ − ωα)μ+

(26)

for ω−(k) � ω � ω+(k), and S(k, ω) = 0 otherwise.
Here, μ+(k) and μ−(k) are the exact exponents [67, 68]

S(k, ω) ∼ ∣∣ω − ω±(k)
∣∣∓μ±(k) (27)

Fig. 5 The dimensionless drag force versus the velocity (relative
to the sound velocity) of the impurity at various values of the cou-
pling parameter γ. (a) The solid (blue) lines represent the force
obtained with Eqs. (9) and (26), open circles are the numerical
data obtained using ABACUS [60]. (b) The values of the dimen-
sional drag force obtained from the interpolation formula (26) [solid
(blue) lines] are compared with that of the analytical formula (29)
for small velocities [dashed (red) lines].

at the borders of the spectrum ω+(k) and ω−(k). We
also put by definition α ≡ 1 + 1/

√
K. The most general

way of obtaining ω±(k), μ±(k), and K is to solve numer-
ically the corresponding integral equations of Refs. [29]
and [67], respectively.

It follows from energy and momentum conservation
that S(k, ω) is exactly equal to zero below ω−(k) for
0 � k � 2πn. In the other regions of ω > ω+ and
ω < ω− (for k > 2πn), possible contributions can arise
due to coupling to multi-particle excitations [29]. How-
ever, these contributions are known to vanish in the
Tonks–Girardeau (γ → ∞) and Bogoliubov (γ → 0) lim-
its and are found to be very small numerically for finite
interactions [60].

The exponents μ± are non-negative [69]. As a conse-
quence, the DSF diverges at the upper branch ω+. At the
lower branch ω−, the DSF shows a continuous transition
to zero for any finite value of γ except for the specific
point γ = +∞ (or K = 1) of the Tonks-Girardeau gas,
where the DSF remains finite but has a discontinuous
transition to zero at both boundaries ω− and ω+.

The normalization constant C depends on momentum
but not on frequency and is determined from the f -sum
rule (7). The expression (26) is applicable for all ranges



Alexander Yu. Cherny, Jean-Sébastien Caux, and Joachim Brand, Front. Phys., 2012, 7(1) 63

of the parameters k, ω, and γ with increasing accuracy
at large γ [45].

The parameter α is needed to reconcile the limiting
value of the exponent μ−(2πn) = 2

√
K(

√
K − 1) in the

vicinity of the umklapp point [67] and the Luttinger the-
ory predictions, given by Eq. (20). Now one can see from
(26) that

S(k, ω) ∼
{

ω2(K−1), k = 2πn

(ω − ω−)μ−(k), k �= 2πn
(28)

Thus, the suggested formula (26) is consistent with both
the Luttinger liquid behavior at the umklapp point and
Imambekov’s and Glazman’s power-law behavior in its
vicinity, as it should be. A more detailed discussion can
be found in Ref. [45]. Similar approximations for the DSF
of 1D Bose gas, confined in a harmonic trap, are consid-
ered in Ref. [70].

The drag force can now be calculated by means of Eqs.
(9) and (26) for arbitrary strength of interactions and ar-
bitrary velocities. The results are shown in Fig. 5(a).

For the important question whether persistent cur-
rents may exist at all, the small velocity regime is most
relevant, which is dominated by transitions near the
first supercurrent state (umklapp point at ω = 0 and
k = 2kF). The drag force in this regime has a power-law
dependence on the velocity Fv ∼ v2K−1 for v 	 c, as
first found by Astrakharchik and Pitaevskii [39]. From
Eqs. (9) and (26) we obtain

fv ≡ FvπεF
g2
i k

3
F

� 2K
(
v

vF

)2K−1[ 4εF
�ω+(2kF)

]2K

× Γ
(
1 + 2K

α − μ+(2kF)
)

Γ
(

2K
α

)
Γ

(
1 − μ+(2kF)

)
×Γ

(
1 + μ−(2kF)

)
Γ

(
1 + 1

α

)
Γ

(
1 + μ−(2kF) + 1

α

) (29)

where Γ (x) is Euler’s Gamma-function, and μ−(2kF) =
2
√
K(

√
K − 1) [67]. This formula is valid for arbitrary

coupling constant and works even in the Bogoliubov
regime at γ 	 1. In practice, Eq. (29) works well up
to v � 0.1c [see Fig. 5(b)]. The strong suppression of
the drag force in the Bogoliubov regime appears because
of the large exponent value 2K − 1 � 1 and the large
argument 2K/α � 1 of the gamma function in the de-
nominator. Certainly, drag force values of order 10−40 lie
beyond realizable experiments and as a matter of fact,
tell us about superfluidity in this regime.

5.5 Drag force from the phase slip transitions

The quantum number I, describing the supercurrent
with energy (2), is nothing else but the phase wind-
ing number of the original Bose field Ψ =

√
neiΦ [30].

The transitions between the supercurrent states are the

phase slip transitions, changing the phase winding num-
ber. One can write down explicitly the low-energy Hamil-
tonian [23] that consists of the supercurrent states and
phonon excitations, interacting due to a static impurity.
The interaction Vi(x) between the impurity and bosons
can be rewritten in terms of the supercurrent states and
the phonons. One can then directly derive the transi-
tion probability per unit time between the supercurrent
states I and I ′ from Fermi’s golden rule [71]. The result
reads at zero temperature [see Eq. (8) of Ref. [71]]

WII′ =
|ggin|2

� Γ [1 + α]Γ [ 12 + α]
4π3/2α

ξII′

(
ξII′

γ̃ε0

)2α

(30)

where α ≡ (I − I ′)2K and ξII′ ≡ εI − εI′ . The tran-
sition probability (30) is determined up to an overall
factor, because the dimensionless parameters g and γ̃,
which are of the order of 1, cannot be defined exactly
from the long-range effective Hamiltonian. The energy
ε0 is a characteristic high-energy cutoff for the phonon
spectrum.

For the Ith supercurrent decay at zero temperature
due to the static impurity, the dominant contribution
comes from the transition to the (I−1)th state, and one
can write for the energy loss per unit time

Ė = WI,I−1ξI,I−1 =
|ggin|2 4π3/2K

� Γ (1+K)Γ (1
2 +K)

(
ξI,I−1

γ̃ε0

)2K

(31)

For large winding number I, we have the relation
ξI,I−1 � 2πn�vI , resulted from Eq. (2). By putting the
energy cutoff ε0 to be equal to 2πn�c and remembering
the definition of the drag force |Ė| = Fvv, we obtain
from Eq. (31)

Fv = |ggin|2 4π3/2

� Γ (K)Γ (1
2 +K)

1
v

(
v

γ̃c

)2K

(32)

Thus, we come to the dependence Fv ∼ v2K−1 at small
velocities, in agreement with the previous results (24)
and (29).

5.6 Direct calculation for the Tonks–Girardeau gas be-
yond linear response theory

In this section we consider the TG gas, or the ideal gas of
spin-polarized fermions. In order to find the drag force,
we choose a frame of reference, in which the massive
impurity is at rest. Moving particles are then scattered
by the impurity potential Vi(x) = giδ(x). For an ideal
Fermi gas the scattering process for each particle is in-
dependent of the scattering of the other particles. The
reflection coefficient for a particle with wave vector k is
easily determined from the one-body Schrödinger equa-
tion: r(k) = m2g2

i /(m
2g2

i + �
4k2). If dNk is the number

of particles with wave vectors lying between k and k+dk,
then these particles transfer momentum to the impurity
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per unit time dF = 2�
2nr(k)k2dNk/m. Since in the cho-

sen frame of reference, the momentum distribution is the
Fermi distribution shifted by mv, we can write down the
explicit expression of the drag force

Fv =
2�

2

m

∫
dk
2π
n(k −mv/�) sign(k)r(k)k2 (33)

where n(k) = 1 for −πn � k � πn, and zero otherwise.
The integral is readily taken

Fv =
2mng2

i

�2

⎧⎪⎪⎨⎪⎪⎩
ξ +

γi

2π

(
arctan

π(1 − ξ)
γi

− arctan
π(1 + ξ)

γi

)
, 0 � ξ � 1

1 +
γi

2π

(
arctan

π(ξ − 1)
γi

− arctan
π(1 + ξ)

γi

)
, ξ � 1

(34)

Here we denote γi ≡ gim/(�2n), and ξ ≡ v/vF. The re-
sults are shown in Fig. 6. As discussed in Section 4.1, the
limiting value of the drag force at large velocities coin-
cides with that obtained within linear response theory.
At small impurity coupling γi 	 1, Eq. (34) reproduces
the linear response formula (12) [see Fig. 3(a)].

Fig. 6 The diagram shows the dimensionless drag force (9) for
the TG gas at various values of the impurity coupling parameter
γi ≡ gim/(�2n). The results are obtained beyond the linear re-
sponse approximation. Note that the absolute value of the drag
force Fv is proportional to γ2

i .

6 Consquence of drag force: Velocity
damping

In the presence of an obstacle as, e.g., shown in Fig. 7,
a ring current can decay due to successive transitions
to supercurrent states with smaller momentum. Starting
in one of the local minima of the excitation spectrum
as seen in Fig. 1, the kinetic energy of the center-of-
mass translation will be transformed into elementary

Fig. 7 An experimental scheme to observe current decays. An ar-
tificial “impurity” is created by optical methods. It can be switched
on adiabatically or abruptly.

excitations above a lower supercurrent state while still
conserving the total energy. The elementary excitations
are quasiparticle–quasihole excitations in the Bethe–
Ansatz wave function [29]. Both in energy and character
most of these excitation lie between the phonon-like ω+

branch and the ω− branch, which is related to dark soli-
tons (see Fig. 4). Assuming that these excitations have
little effect on successive transitions, we estimate [32]
the decay of the center-of-mass velocity v by the classi-
cal equation Nmv̇ = −Fv(v), where Fv is given by Eqs.
(9) and (26). This equation was integrated numerically
and the result is shown in Fig. 8. At the initial supersonic
velocity, where the drag force is saturated [see Fig. 5(a)]
the supercurrent experiences constant deceleration. For
v � c the drag force decreases and consequently the de-
celeration slows down. For the TG gas we find an analyt-
ical solution for exponential decay v(t) = v0 exp(−t/τ)
for v0 � vF. In the weakly-interacting regime, the decay
may be slow compared to experimental time scales.

Fig. 8 Decay of the ring current velocity of 1D bosons from the
initial velocity of 1.1vF at t = 0. The solid (blue) and dashed (red)
lines represent the results obtained with the approximate formula
and ABACUS, respectively. The time scale is τ = Nπ�

3/(2mg2
i ).

Reproduced from Ref. [32], Copyright c© 2009 The American Phys-
ical Society.

7 Drag force in extended potentials

7.1 1D bosons in a moving shallow lattice

Equation (8) can be verified experimentally for differ-
ent types of obstacles: for Vi(x) = giδ(x) all the points



Alexander Yu. Cherny, Jean-Sébastien Caux, and Joachim Brand, Front. Phys., 2012, 7(1) 65

at the transition line contribute to the drag force, while
for the periodic potential with the spatial period a only
a set of discrete points in the ω–k plane do [32, 38].
This is simply due to the fact that a periodic potential
has only a discrete set of Fourier components with mo-
menta jkG with j being integer and kG ≡ 2π/a being
the reciprocal lattice vector. For instance, we have two
nonzero components kG and −kG for optical lattice po-
tential Vi(x) = gL cos(2πx/a)

|Ṽi(q)|2/L = πg2
L

[
δ(q − kG) + δ(q + kG)

]
/2 (35)

in the thermodynamic limit (n = const, L → ∞). The
filling factor of the lattice, that is, the number of parti-
cles per site, is given by α = 2πn/kG, because the total
number of lattice periods equals LkG/(2π). Substituting
Eq. (35) into the general expression for the drag force
(8), we obtain at zero temperature

Fv = πg2
LkGS(kG, kGv)/2 (36)

The values of the obtained drag force can easily be es-
timated with the ω–k diagram for the DSF (see Fig. 4).
Note that the drag force is now proportional to the total
number of particles, by contrast to the point-like impu-
rity case, described by Eq. (9). This is because the lattice
potential is non-local.

Let us recall that the model considered in this paper
assumes periodic boundary conditions. However, accord-
ing to the general principles of statistical mechanics, the
boundary conditions do not play a role in the thermo-
dynamic limit. Hence, the obtained formula (36) can be
exploited at sufficiently large number of particles even in
the case of a cigar-shaped quasi-1D gas of bosons. This
equation gives us the momentum transfer per unit time
from a moving shallow lattice, which can be measured
experimentally [17–19].

In the case of Bogoliubov and TG regimes, the drag
force admits analytic solutions. As discussed in Section
4.3, at small γ the upper dispersion curve ω+(k) is de-
scribed well by the Bogoliubov relation (13), and the
behavior of the DSF simulates the δ-function spike in
accordance with Eq. (14). We derive from Eqs. (14) and
(36)

Fv =
g2
LmL

�2

1
2αξ

δ

(
ξ −

√
1
α2

+
γ

π2

)
(37)

where by definition ξ ≡ v/vF.
In the TG regime, discussed in Section 4.2, the DSF is

given by Eq. (11) with the limiting dispersions ω± being
known analytically. Then Eqs. (11) and (36) yield

Fv = g2
LmL/(4�

2)[Θ(ξ − ξ+) − Θ(ξ − ξ−)] (38)

where we put by definition ξ± ≡ |1 ± 1/α|.
The values of the drag force (36) obtained from the

interpolating expression for DSF (26) is shown in Figs.

9 and 10. The filling factor α = 1 (kG = 2kF) corre-
sponds to the Mott insulator state in a deep lattice. As
can be seen from Fig. 4, at this value of the reciprocal
vector the DSF is almost independent of ω when γ � 1,
and the drag force takes non-zero values for arbitrary
v � ω+(kG)/kG (see Fig. 9).

Fig. 9 Zero temperature phase diagram for superfluid–isolator
transition of the Bose gas in a moving shallow lattice: dimension-
less drag force Fv�2/(g2

LmL) versus the lattice velocity (in units
vF) and the interaction strength γ at various values of the filling
factor α. The dimensionless values are represented in shades of
gray between zero (white) and 1.0 (black). The solid (blue) lines
correspond to the DSF borders ω+(k) and ω−(k), respectively.

By contrast, at small γ its non-zero values practically
localize in the vicinity of v = ω+(kG)/kG, as shown in
Fig. 10. Then superfluidity breaks down when the point
ω = vkG and k = kG lies exactly on the Bogoliubov dis-
persion curve (see Fig. 4). Taking into account that the
Bogoliubov dispersion is very close to the free particle
one, we obtain for the break point kGv = �k2

G/(2m).
One can see that this point coincides with the point of
dynamical instability for bosons in the cosine shallow
lattice. Indeed, the dynamical instability appears at a
value of lattice velocity v corresponding to a negative
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Fig. 10 The same diagram as shown in Fig. 9, but here the drag
force is represented as a function of velocity and inverse filling fac-
tor.

curvature of the Bloch dispersion curve at the momen-
tum mv/�. This is because in the reference frame where
the lattice is at rest, particles’ momenta are shifted by
the value mv/�, and the effective mass, given by the sec-
ond derivative of the curve in this point, becomes neg-
ative. This implies that the effective kinetic energy of
particles and the interaction energy have different signs,
which immediately leads to the instability of the repul-
sive Bose gas at sufficiently large numbers of particles.
For a shallow lattice, the Bloch dispersion curve is very
close to that of free particles, except for momenta near
the edge of the Brillouin zone k = ±kG/2, where the
dispersion has a negative curvature (see, e.g., Ref. [72]).
Hence, the condition for the dynamical instability takes
the form kG/2 = mv/�. This coincides with the above
condition for the break point, obtained within the gen-
eralized Landau criterion of superfluidity, suggested in
Section 3. A similar analysis can also be carried out for
the TG gas.

The frictionless motion at some values of the parame-
ters v, γ, α is consistent with the presence of persistent
currents in the 1D Bose–Hubbard model [73–78]. As dis-
cussed in Section 3, the drag force can be considered as
a measure for superfluidity in the absence of the order
paramenter. Then Fig. 9 represents the phase diagrams
in the v − γ and v − 1/α planes. They are similar to
that of Ref. [75]. One can see from the diagrams that
there is no sharp transition from superfluid to isolated
phase in 1D, which is consistent with the experimental
findings of Ref. [19]. Note that in paper [78], superfluidity

was examined in terms of quantum phase slips, discussed
in Section 5.5. So, both the quasiparticle and quantum
phase slip descriptions lead to the same results.

7.2 1D Bose gas in a moving random potential

Recently, direct observation of Anderson localization
with a controlled disorder was reported in a one-
dimensional waveguide [20]. An initially trapped Bose
gas is released into a one-dimensional waveguide, where
it is exposed to an artificially created speckled potential.
The wave function of the spreading atoms can be directly
measured by optical methods.

Anderson localization was initially predicted for a sys-
tem of non-interacting particles [79]. Modern experimen-
tal technique in cold atoms allows to control the strength
of interparticle interactions and the parameters of speck-
led potentials as well (see, e.g., reviews [80, 81]). Delo-
calization of a disordered bosonic system by repulsive
interactions was observed [22]. Thus, the interplay be-
tween interactions and disorder remains a fundamental
problem in this field. Considerable attention has recently
been given to this problem in many papers [82–91]. Most
of the papers consider weakly-interacting bosons or the
regime of infinite interactions (TG gas). By using the
generalized Landau criterion of superfluidity, introduced
in Section 3), one can study the behaviour of a 1D Bose
gas in weak random potentials and obtain the superfluid-
insulator phase diagram for arbitrary strength of boson
interactions.

It is convenient to consider random potentials by intro-
ducing an ensemble of various potentials. Then the ran-
dom potential features can be obtained by averaging over
the ensemble. One of the most important characteristics
of random potentials, created with speckled laser beams,
is their correlation function 〈Vi(x)Vi(x′)〉 = g(x − x′),
where 〈· · ·〉 stands for the average over the random po-
tential ensemble. For an arbitrary potential profile, the
drag force is calculated with Eq. (8). Taking the average
of this equation with respect to the ensemble, we obtain
the drag force acting from the moving random potentials.
At zero temperature, we derive

〈Fv〉 =
∫ 2kC

0

dk kg̃(k)S(k, kv) (39)

Here g̃(k) ≡ 〈|Ṽi(k)|2〉/L is the Fourier transform of
the correlation function g(x). The integration in (39)
is limited, because for speckled laser beams, the func-
tion g̃(k) always has a finite support due to the limited
aperture of the diffusion plate generating the random
phase [92, 93]. So, g̃(k) = 0 for |k| > 2kC . For esti-
mations, we take a realistic correlation function [92, 93]
g̃(k) = πV 2

RσrΘ
(
1 − |k|σr

2

) (
1 − |k|σr

2

)
. Here σr ≡ 1/kC
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is the random potential correlation length, depending on
the parameters of the experimental device. It is usually
of the order of 1 μm [81]. Thus, we have three parameters
governing the phase diagram: the potential velocity, the
interaction strengh, and the correlation length.

Like the lattice potential, the random potential is non-
local, and, as a consequence, the drag force (39) is pro-
portional to the total number of particles. The results
obtained with the interpolating formula (26) are shown
in Fig. 11. As for the shallow lattice potentials, the figure
can be treated as the zero-temperature phase diagram for
the superfluid–insulator transion: superfluidity assumes
zero or strongly suppressed values of the drag force.

Fig. 11 Zero temperature phase diagram for superfluid–isolator
transition of the Bose gas in a moving random potential: drag force
(in units of 2πmV 2

RσrN/�2) versus the potential velocity (in units
vF) and the inverse correlation length (in units kF). The dashed
(blue) lines correspond to the intersection of the limiting disper-
sions ω± and the transition line: v = σrω±(2/σr)/2. On the left
to the lines, the drag force is zero, because within the integration
limits of Eq. (39), the values of the DSF is zero (see Fig. 4).

In the Bogoliubov and TG regimes, one can find the
drag force analytically. For γ 	 1, we obtain from Eqs.
(14) and (39)

〈Fv〉 = F0 Θ(ξ − ξc)Θ(1 − t)(1 − t) (40)

Here F0 ≡ 2πmV 2
RσrN/�

2 is a unit of force, t ≡
πnσr

√
ξ2 − ξ2c , and ξc =

√
γ/π is the sound velocity (in

units of vF) in the Bogoliubov regime. In the TG regime,
Eqs. (11) and (39) yield

〈Fv〉 = F0[f1 + (f2 − f1)Θ(λ+ − λ0) − f2Θ(λ− − λ0)]

(41)

where we introduce the notations λ0 ≡ 2/(πnσr), λ± ≡
2|ξ ± 1|, f1 ≡ 1

4 (λ+ − λ−)(1 − λ++λ−
2λ0

), f2 ≡ (λ0−λ−)2

8λ0
.

The obtained results are in accordance with the exis-
tence of a mobility edge for a particle moving in a random
potential with a finite correlation length σr. In this case,
the mobility edge is given by [83, 85] kmob = kC ≡ 1/σr.
If |k| > kC , then the k-wave propagation is not sup-
pressed, while in the opposite case, the particle wave
function is localized (Anderson localization), which leads
to the particle immobility. In the TG regime, the gas is
equivalent to the ideal Fermi gas, where the mobile par-
ticles lie in the vicinity of the Fermi points. In the ref-
erence frame where the random potential is at rest, the
absolute value of momentum of the lowest Fermi level is
given by �k′F = |�kF −mv|. When k′F > kC , the system
should be superfluid. This is consistent with Eq. (39),
which yields zero value of the drag force for k′F > kC .
Indeed, the value 2k′F corresponds to the cross point of
the dispersion curves for the TG gas and the transition
line: ω±(2k′F) = 2k′Fv, where ω± is given by Eq. (17)
with infinite γ. Once 2k′F > 2kC then the value of drag
force is zero, because the DSF is zero within the limits
of integration in Eq. (39) (see Fig. 4).

8 Conclusions

The absence of a well-defined order parameter makes the
behavior of the 1D Bose gas rather unusual in compari-
son to the 3D case. As shown in Section 2, the 1D Bose
gas exhibits superfluid phenomena of equilibrium type
(Hess–Fairbank effect, analogous to the Meissner effect
in superconductivity) but in general does not show dy-
namic superfluid phenomena, such as persistent currents
in a ring. Instead of a phase transition to full super-
fluidity as is known in 3D, the 1D Bose gas shows a
smooth crossover and reaches the metastability of cur-
rents only in a weakly-interacting limit. In this case, the
drag force, being a simple integral parameter, can be
chosen as a quantitative measure of superfluidity. Super-
fluidity assumes zero or strongly suppressed values of the
drag force for the Bose gas moving in different small ex-
ternal potentials. Which value of the drag force should
be taken as the transition threshold becomes a question
of convention in 1D.

The drag force turns out to be fundamental, because
it generalizes the Landau criterion of superfluidity. The
generalized Landau criterion, based only on energy and
momentum conservation, does work when the usual Lan-
dau criterion fails. This is because the drag force effec-
tively involves not only the spectrum but the probability
of transitions to excited states. A good example is the
dynamical instability of weakly-interacting 1D bosons,
moving in a shallow lattice. As shown in Section 7.1, the
generalized Landau criterion not only successfully pre-
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dicts the dynamical instability of the system but gives
the quantitative characteristics of the phase transition.

It should be noted that the suggested approach has
an apparent disadvantage. Being based on the first order
time-dependent perturbation theory, the scheme cannot
describe changes of the ground state caused by the per-
turbing potential. Despite of this fact, it can describe
well the superfluid–insulator phase diagram, when the
system propagates through shallow lattices or random
potentials.
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Appendix A: General formula for the drag
force from Fermi’s golden rule

Once an impurity moves into a homogeneous medium
with velocity v, it is scattered by the medium particles.
In general, the scattering leads to transitions with mo-
mentum and energy transfer and, consequently, to a fi-
nite value of energy loss per unit time. It can be calcu-
lated within linear response theory [5, 39, 94] or from
Fermi’s golden rule [94, 95].

During the scattering, the initial state of the composite
system is assumed to be |kin,m〉 = |kin〉|m〉, where |m〉
is initial state of the medium, the incident particle state
is the plane wave |k〉 = exp(ik ·y)/

√
V with wave vector

kin, and V = LD is the D-dimensional volume. The wave
vector is connected to the initial velocity by the relation
v = �kin/mi. The same notations are adopted for the
final state |kf , n〉 = |kf〉|n〉. The rate for the scattering
process (that is, the transition probability per unit time)
is given in the lowest order in the impurity interaction
by Fermi’s golden rule

w(kin,kf) =
2π
�

∑
n

∣∣〈kf , n|H ′|kin,m〉∣∣2
×δ(En + Tkf − Em − Tkin) (A1)

where Tk = �
2k2/(2m) is the energy dispersion for the

impurity. The momentum and energy transfer are given
by

�q = �kin − �kf (A2)

�ω = Tkin − Tkf = �q · v − �
2q2/(2mi) (A3)

respectively.
Performing the integration over y in the matrix ele-

ment of the interaction HamiltonianH ′ =
∑

j Vi(|y−xj |)

yields for q �= 0∣∣〈kf , n|H ′|kin,m〉∣∣2 = |Ṽi(q)|2
∣∣〈n|δρ̂q|m〉∣∣2/V 2 (A4)

At nonzero temperature, the medium can be in an ar-
bitrary initial state |m〉 with the statistical probability
exp(−βEm)/Z. In this case, the transition rate (A1)
should be averaged over the statistical ensemble, and we
arrive at

w(q) =
2π
�

|Ṽi(q)|2
V 2

S
(
q, �q · v − �

2q2

2mi

)
(A5)

Here we use Eq. (A4) and the definition of the DSF (4).
In order to obtain the energy loss per unit time, we

need to sum up the energy transfer (A3) weighted with
the rate (A5) over all the final states

Ė = −
∑

q

w(q)
(

�q · v − �
2q2

2mi

)
(A6)

Replacing the sum by the integral in the thermodynamic
limit

∑
q → V/(2π)D

∫
dDq and subsituting Eq. (A5)

yield Eq. (3).

Appendix B: The drag force in the RPA ap-
proximation

B.1 The general expression

In this appendix, we will use the dimensionless variables
λ ≡ q/kF, ν ≡ �ω/εF, ξ ≡ v/vF, where kF ≡ πn,
εF ≡ �

2k2
F/(2m), and vF ≡ �kF/m are the Fermi wave

vector, energy, and velocity, respectively. Besides, it is
convenient to introduce the small parameter α ≡ 2/γ,
which can take the values 0 � α � 1/4 within the RPA
scheme [42]. In terms of the new variables, Eq. (9) reads

fv ≡ FvπεF
g2
i k

3
F

=
∫ +∞

0

dλλ s(λ, 2ξλ) (B1)

where we put s(λ, ν) ≡ εFS(kFλ, εFν/�)/N .
The DSF in the RPA approximation was calculated

and described in details in Section 4.2 of paper [42]. The
result at zero temperature can be written in the form

s(λ, ν) = sreg(λ, ν) + Ã(λ)δ(ν − ν0(λ)) (B2)

with the regular part of the dimensionless DSF

sreg(λ, ν) ≡ λ

4
(1 − 3α)2(1 − 2α)[

(1 − 3α)2λ− αh ln f
]2 + [απh]2

(B3)

This part is localized in the same region |λ2 − 2λ|(1 −
2α) � ν � (λ2 + 2λ)(1 − 2α), as the DSF in the linear
approximation, given by Eqs. (16) and (17). Here we put
by definition

f(λ, ν) ≡
∣∣∣∣ν2 − (λ2 − 2λ)2(1 − 2α)2

ν2 − (λ2 + 2λ)2(1 − 2α)2

∣∣∣∣ (B4)
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and

h(λ, ν)≡(1 − 9α/4)
λ2

2
− α

2
− ν2

8λ2

3α(1 − 8α/3)
(1 − 2α)2

(B5)

The quantities in Eq. (B2) are given by Ã(λ) ≡
A(kFλ)/N , ν0(λ) ≡ �ω0(kFλ)/εF with A(q) and ω0(q)
being defined exactly in Section 4.2 of Ref. [42]. By em-
ploying the general formula (B1) and the RPA expres-
sion (B2), we can evaluate the drag force by numerical
integration. The δ-function contribution appears as a re-
sult of intersection of the curve ν0(λ) and the line 2ξλ
in the ν–λ plane and does not play a role at small val-
ues of the impurity velocity, see Fig. 12. One can easily
show that the δ-contribution appears for α � 2/9 when
ξ−(α) � ξ � ξ∗(α) or ξ � ξ+(α), where

ξ∗(α) = (1 − 2α)

√
(1 − 3α)2/α2 − 1

3(1 − 8α/3) + (1 − 3α)2/α2

ξ±(α) = (1 − 2α)
4 − 9α±√

α
√

16 − 71α+ 80α2

4(1 − 3α+ 2α2)

Fig. 12 The dark (blue) region shows where the δ-function con-
tribution exists. Such a contribution results from the intersection
of the curve ν0(λ) and the line 2ξλ in the ν–λ plane. One can see
that there is no δ-function contribution at sufficiently small ve-
locity of the impurity. Here ξc ≡ c/vF, and ξc � 1 − 2α in the
strong-coupling regime.

B.2 The drag force for small velocities at zero temper-
ature

Since at the small velocities the linear approximation
(18) fails, we need to apply here the full RPA expres-
sion for the drag force. At small values of ξ = v/vF, the
limits of the integral in Eq. (B1) becomes very close to
each other, and we can put fv =

∫ 2(1+ξ/ξc)

2(1−ξ/ξc)
dλλ s(λ, ν =

2ξλ) � sreg(2, 4ξ)8ξ/ξc and obtain from Eq. (B3)

fv � 4ξ(1 − 3α)2

D2 + α2π2
[
2 − 5α− ξ2

ξ2
c

3α
2 (1 − 8α

3 )
]2 (B6)

where

D≡2(1−3α)2+α
[
2−5α− ξ2

ξ2c

3α
2

(
1− 8α

3

)]
ln

(
4
ξ2c
ξ2

−1
)

In principle, the logarithmic term should dominate in
the denominator when ξ → 0 and one can neglect all the

other terms; however, this approximation works only at
very small values of ξ. A much better approximation can
be obtained by keeping the logarithmic term together
with the zero-order terms in ξ:

fv � (1 − 3α)2

(1 − 5α/2)2
ξ[

(1−3α)2

1−5α/2 − 2α ln ξ
2ξc

]2

+ α2π2

(B7)
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