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A vortex can tunnel between two pinning potentials in an atomic Bose-Einstein condensate on a time

scale of the order of 1s under typical experimental conditions. This makes it possible to detect the

tunneling experimentally. We calculate the tunneling rate by phenomenologically treating vortices as

charged particles moving in an inhomogeneous magnetic field. The obtained results are in close agreement

with numerical simulations based on the stochastic c-field theory.
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Topologically stable quantized vorticity is the evidence
of superfluidity and has been studied extensively in super-
conductors, superfluid helium, and most recently in Bose-
Einstein condensed (BEC) ultracold atomic gases [1].
Tunability of experimental parameters in dilute-gas sys-
tems by means of Feshbach resonances and external mag-
netic or electric fields makes it possible to investigate
fundamental condensed-matter phenomena in different re-
gimes that are not otherwise easily accessible [2,3]. Recent
advances in the field include demonstration of quantum
phase transitions [4], the Josephson effect [5], and vortex
formation through synthetic gauge fields [6].

A superfluid vortex in a large BEC is a macroscopic
object involving many degrees of freedom and is therefore
expected to obey the laws of classical physics. The static
and dynamic vortex properties in a BEC have been suc-
cessfully described by the mean-field Gross-Pitaevskii
equation (GPE) [7], which is a classical field theory. If
the number of vortices is so large that their density is
comparable to the particle density, quantum fluctuations
dominate and the mean-field description fails. In this case a
quantum phase transition is predicted to take place from
the BEC ground state to a highly correlated state, similar to
the Laughlin state in a quantum Hall liquid [8]. Quantum
corrections are also needed if the dynamics of a single
vortex over distances comparable to its core size (the
healing length) are considered.

Quantum tunneling of particles through a barrier, a
counterintuitive consequence of the superposition princi-
ple, is known to happen on atomic scales. As pointed out by
Schrödinger, quantum mechanics admits the superposition
of macroscopic states as well [9]. An intense search for
macroscopic systems that show evidence of the effect has
so far been successful only for strongly interacting
condensed-matter systems [10]. Here, we focus on the
quantum tunneling of a single superfluid vortex between
two adjacent pinning sites in a weakly interacting BEC.
This process involves a small, controllable fraction of
the total superfluid, thus presenting a route to larger

superpositions. We employ two methods of study. First,
we treat the vortex as a charged particle in an effective
inhomogeneous magnetic field, exhibited by the pinning
potentials. We show that a charged particle feels a double-
well potential in such a field. We then calculate the tunnel-
ing rate in the double-well potential within the Heitler-
London approximation. Second, we simulate the vortex
dynamics within the truncated Wigner approximation
(TWA), which takes into account quantum noise on top
of the mean-field GPE. The two theories give closely
comparable predictions for the tunneling rate, and a
much larger rate than found in previous studies of vortex
tunneling [11,12].
A dilute-gas BEC containing a vortex consists of a

superfluid whirl around a hole in the condensate. In a
homogeneous system, vortices located at different posi-
tions are degenerate. In the presence of a localized impu-
rity, the degeneracy is lifted. An impurity that repels atoms
will attract and thus pin the vortex. A vortex can even be
pinned by a localized impurity in the presence of harmonic
trapping as studied in detail in Ref. [13].
Here we study a vortex in the presence of two equivalent

pinning potentials. First, we employ mean-field theory to
study the possibility of vortex pinning and postpone the
consideration of quantum fluctuations. We assume that the
pinning potentials are located at r ¼ �r0 and the energy of
the condensate is lifted by �½nðr0Þ þ nð�r0Þ�, where � > 0
is the strength of the pinning potentials and nðrÞ is
the density of the condensate in the absence of the
pinning potentials. We approximate the vortex located at

r ¼ 0 by the mean-field wave function c ðrÞ ¼ffiffiffiffiffi
n0

p
r expði�Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�2 þ r2
p

[7], such that nðrÞ ¼ jc ðrÞj2, �
is the healing length, and � is the polar angle of the vector
r. If the core of a vortex is located at r ¼ xr̂0, then the extra
energy due to the pins is

�EðxÞ � �n0

� ðx� r0Þ2
2�2 þ ðx� r0Þ2

þ ðxþ r0Þ2
2�2 þ ðxþ r0Þ2

�
: (1)
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We plot xmin such that �EðxminÞ ¼ minx½�EðxÞ� in Fig. 1.
We see that if the separation between pins is larger than
roughly twice the healing length, then the vortex can be
pinned by one of the pins. On the other hand, if the
separation is smaller than that, the vortex is located be-
tween the two pins. This bifurcation is caused by the
appearance of an energy barrier between the two pins for
the vortex to overcome.

To compare this with more quantitative results, we solve
the GPE in 2D [7]:

i@
@c ðr; tÞ

@t
¼

�
� @

2r2

2m
þ VðrÞ þ gjc ðr; tÞj2

�
c ðr; tÞ: (2)

Here VðrÞ ¼ V1
pinðrÞ þ V2

pinðrÞ þ VtrapðrÞ consists of three
contributions. The two pinning potentials are of the form

V1;2
pinðrÞ ¼ V0=ð��2Þ exp½�ðr� r0Þ2=�2� with V0 being

the strength of a pinning potential, � is its width. The
trapping potential is VtrapðrÞ ¼ m!2

?r
2=2, where r is the

2D vector. The two-body interaction strength in 2D g ¼ffiffiffiffiffiffiffi
8�

p
@
2a=ðmazÞ is expressed via the s-wave scattering

length a and the axial oscillator length az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!z

p
.

The axial confinement is assumed much stronger than the

radial one a? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!?

p � az. We have solved Eq. (2)
for a stationary state with a pinned vortex. The healing

length is defined as � ¼ @=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgnp

p
, where np is the local

density of the condensate at a pinning potential in the
absence of the vortex. We have chosen � ¼ 0:1a?, g ¼
0:01@2=m, V0 ¼ 4@2=m, and the number of particles N ¼R
drjc ðrÞj2 � 2� 105. This corresponds to the chemical

potential � ¼ 25@!? and the pinning potential amplitude
V0=ð��2Þ ¼ 5�. We find that the vortex can be pinned by

one of the pins if the separation between them is larger than
a critical value, in agreement with the previous result. Both
are shown in Fig. 1.
In the recent experiment with 23Na atoms [14],

!z=2� ¼ 1 kHz and !?=2� ¼ 20 Hz. This gives a? �
4:7 �m, � � 1:6 �m, and the bulk density n0 �
83 �m�2 � 5:7np. Narrow pinning potentials could be

realized by blue-detuned lasers focused to a beam of
diameter of�0:7 �m at half maximum or by heavy atoms
in a species-specific optical potential of double-well shape
[15]. The vortex can be created by standard techniques [16]
and located on one specific pin. Another pin can be ramped

up adiabatically on a time scale d0=c, where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gn0=m

p
is the speed of sound, which is short compared to the
expected tunneling rate. After a given hold time, the vortex
location can be measured by imaging after a brief expan-
sion phase without pinning potentials. This would reveal
experimentally whether tunneling has occurred.
In this Letter we are interested in the tunneling rate of a

vortex between two pinning sites. The vortex tunneling rate
can be related to a wave-function overlap within the
Heitler-London approximation [12,17]. Let j�ii (i ¼
1; 2) be many-body states of the vortex pinned by one of
the pinning potentials. The tunneling rate is then given by
tv � h�2jV1

pinj�2ijh�1j�2ij. The quantity h�2jV1
pinj�2i is

approximately equal to V0np. The period of the coherent

oscillations is T ¼ 2�@=tv and thus

T � 2�@

V0npjh�1j�2ij : (3)

In the following we will calculate the overlap jh�1j�2ij.
A vortex in a density gradient feels a Magnus force,

which is analogous to the Lorentz force on a charged
particle in a magnetic field. Here, we further develop a
phenomenological approach based on this analogy [11,18]
in order to estimate the period of vortex tunneling (3). We
approximate the vortex located at r by the Feynman many-
body wave function [19]

hr1; . . . ; rNj�i ¼ YN
j¼1

ei�ðrj�rÞ�0ðr1; . . . ; rN; rÞ: (4)

Here �ðrj � rÞ ¼ arctan½ðyj � yÞ=ðxj � xÞ� is the phase of
the atom at rj relative to the center of the vortex at r. The

real function�0 vanishes at the vortex core and is finite far
away from it. When the vortex moves, the value r changes
and the vortex state acquires a phase factor. This is similar
to the Aharonov-Bohm effect [20] and motivates the anal-
ogy with a charged particle.
A particle with charge qmoving in a magnetic fieldAðrÞ

along a path � acquires an Aharonov-Bohm phase �� ¼
� q

@

R
� AðrÞdr, such that its state vector changes as

jc i ! e�i��jc i. This can also be calculated as �� ¼
�Im

R
� drhc jrrc i. When we substitute into this expres-

sion the Feynman variational state from Eq. (4), we obtain
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FIG. 1 (color online). Equilibrium positions xmin of a vortex in
the presence of two pinning potentials separated by the distance
d0 ¼ 2r0. Solid line: analytical result based on Eq. (1). Open
circles: results of numerical simulations based on the solutions of
Eq. (2). Inset: Number of particles inside a circle with the radius
equal to a pinned position of the vortex. Dashed line: result of the
numerical simulation. Solid line: analytical result based of the
assumption that the vortex is structureless.
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��v¼�R
d2r0

R
�dr½rr�ðr0 �rÞ��ðr0;rÞ. Here �ðr0;rÞ¼

N
R
d2r2 .. .d

2rN�
2
0ðr0;r2; . . . ;rN;rÞ is the particle density

at r0 of the BEC with a vortex core at r. Comparing the
expressions �� and ��v for the phase change, we con-
clude that we may regard a vortex as a charged particle
subject to a vector potential

A ðrÞ ¼ @

q

Z
d2r0½rr�ðr0 � rÞ��ðr0; rÞ: (5)

We approximate the density of a vortex at r by �ðr0; rÞ ¼
nðr0Þjr0 � rj2=½2�2ðr0Þ þ jr0 � rj2� [7], where nðr0Þ is the
mean-field density without a vortex from Eq. (2) and

�ðr0Þ ¼ @=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgnðr0Þp

the local healing length. From
Eq. (5) we calculate the magnetic field B ¼ r�A. It is
directed along the z axis. The magnitude is proportional to
the convoluted density, blurred on the size scale of the
vortex core, as seen in Fig. 2. We shall study the dynamics
of the charged particle in this magnetic field.

A quantum particle with charge q and mass mq in a

constant magnetic field B ¼ Bez and a square box of size
L� L has energy levels En ¼ @!cðnþ 1=2Þ, where !c ¼
qB=mq [21]. Each level is highly degenerate. The lowest

Landau level is characterized by the wave functions

hrjrqi ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�l2

p exp

�
� jr� rqj2

4l2
þ iez � ½rq � r�

2l2

�
; (6)

with l2 ¼ @=ðqBÞ. Degeneracy corresponds to different rq,
which are separated by j�rqj ¼ l2=L. Thus, the lowest

state will be a superposition of many such wave functions
with different rq. The particle can be found at any rq with

equal probability.
It is difficult to deal with this degeneracy numerically. A

simplified treatment with an effective Hamiltonian can be

found when the Landau length l is much smaller than the
healing length �. Formally, we assume delocalized Landau
wave functions on spatial domains R of the size ��2

where we approximate BðrÞ as constant, but account for
the energy dependence of the lowest Landau level on larger
length scales. Averaging over the domains R then yields
the effective Hamiltonian

Ĥ eff ¼ p̂2

2mq

þ @qBðrÞ
2mq

: (7)

Intuitively, this can be understood as a Zeeman
Hamiltonian for a particle with orbital magnetic moment
�o ¼ @q=ð2mqÞ, which is obtained semiclassically for a

charged particle orbiting at a radius given by the Landau
length l, with cyclotron frequency !c. The effective mass
of the vortex mq does not enter the expression for the

tunneling rate Eq. (3). The magnetic field depicted in
Fig. 2 suggests that Eq. (7) describes a particle moving in
a double-well potential. The tunneling rate of the particle
between two wells gives the tunneling rate of the vortex
between two pins. We calculate the tunneling rate (shown
by squares in Fig. 3) from Eq. (3), where the states j�1=2i
are obtained from numerical solutions of Eq. (7). The
correspondence between the two approaches in obtaining
the overlap integral was shown in Ref. [11]. In the follow-
ing we will compare this result with simulations in the
truncated Wigner approximation.
Before proceeding, we briefly analyze an approach for

calculating the tunneling rate of a vortex found in previous
studies. The charged particle analogy was used in
Refs. [11,18], but the detailed density structure was
ignored. This amounts to considering the effective theory
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FIG. 2 (color online). Effective magnetic field B along the axis
through the trap center (solid line) and density n (dashed line).
The two pinning potentials are separated by the distance d0 ¼
2�. B0 ¼ n0h=q, where n0 is the bulk density at the trap center.
In this configuration the vortex is pinned classically (cf. Fig. 1)
and a double-well potential appears within the effective theory.
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FIG. 3 (color online). The period of quantum oscillations of a
vortex between two pining potentials as a function of distance
between them. The open circles represent the result of the
truncated Wigner approximation. The open squares are the result
of the effective theory (see text). Inset: One of the trajectories of
a vortex. Dashed lines indicate the xmin � �0:6� values corre-
sponding to d0 � 1:8� in Fig. 1.

PRL 108, 015301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

6 JANUARY 2012

015301-3



developed in the previous section with a constant magnetic
field. Indeed, for structureless vortex �ðr0; rÞ ¼ n0 in Eq.
(5). In this case

A ðrÞ¼n0
@

q

Z
d2r0½rr�ðr0 �rÞ�¼n0h

2q
ðexy�eyxÞ: (8)

This corresponds to the constant magnetic field pointing in
the third direction B ¼ n0h=qez. The coherent state of a
charged particle moving in this magnetic field is the lowest
Landau level centered at arbitrary rq and given by Eq. (6).

It is assumed that this degeneracy is broken by the pinning
potentials and thus rq is the position of one of them. Then

the overlap of the two states jrqi and j � rqi is

jh�rqjrqij ¼ expð�2�r2qn0Þ. A similar result was ob-

tained recently in Ref. [12], which was derived within a
different approach. The distance between two pinning
potentials should be of the order of l to ensure that the
overlap has a reasonably large value. On the other hand, l is
of the order of the average interparticle distance. The latter
is much smaller than the healing length, i.e., the size of the
vortex core. Indeed, we have �=l � 18. We found that the
overlap is � expð�N0Þ, where N0 � 103 for separations
above the bifurcation point in Fig. 1 and thus the overlap is
practically zero. This would give very large values for the
period of oscillations in Eq. (3). In contrast we have found
reasonable values for the period. We attribute this to two
factors. First, the effective number of particles involved in
the tunneling process N0 is reduced. This is seen from the
inset in Fig. 1 and is due to a small deviation between the
pin and vortex positions. Second, the double well felt by
the vortex becomes shallow for small separation of the
pins, allowing for much larger overlap of the localized
states. These factors were not considered in the previous
studies. Thus the exponential behavior for small separa-
tions breaks down.

We perform stochastic simulations in TWA to calculate
the tunneling rate numerically. This method enables one to
capture many quantum features of the system, being in-
creasingly accurate for short evolution times [22]. We
construct a Wigner representation of a highly occupied
BEC in a coherent state. Our initial state construction
then proceeds by simply adding vacuum noise for each
mode to the coherent state. The coherent state distribution
approaches a delta function in phase space, whereas the
vacuum modes have an irreducible variance. The primary
physical effect of the noise is to allow spontaneous scat-
tering processes that are disallowed in pure GPE theory.
This provides a useful point of comparison with our
charged particle analogy. We first find a stationary solution
of Eq. (2) that corresponds to a pinned state. This is one of
the states for d0=� larger than the bifurcation point in

Fig. 1. Quantum noise is added to this state as c ðrÞ !
c ðrÞ þP

M
j¼1 �j expðikjrÞ=

ffiffiffiffi
V

p
, where �j are complex-

Gaussian random variables with �	
i �j ¼ �ij=2, sampling

vacuum fluctuations in TWA [23].M is chosen to represent
the physical system, while excluding excess vacuum noise.
The results should not change significantly upon appre-
ciable change of M. Two different energy cutoffs
@
2k2M=2m ¼ 300@!? and 400@!? are used to determine
values for M and define the low-energy c-field region. We
then propagate this state in real time by solving the time-
dependent Eq. (2). One of the trajectories is presented in
Fig. 3. This corresponds to d0 � 1:8� in Fig. 1. It is seen
that the vortex performs oscillatory motion between the
two pins with the period T � 14=!?. We average the
period of such oscillations over 100 trajectories and present
the result in Fig. 3. Our results are indistinguishable on the
scale of the figure for the two cutoffs. We compare the
results of the simulations with the results of the effective
theory given by Eq. (3) in the same figure. The results
essentially agree in the vicinity of the bifurcation point.
The discrepancy for larger times of propagation is ex-
plained by the fact that TWA is not appropriate for long
time dynamics [22]. We see that the period of the vortex
oscillations between two pins can be of the order of 1s if
the separation between pins is of the order of 2–3 healing
lengths.
In conclusion, we have studied the quantum dynamics of

a vortex in the presence of two pinning potentials. In
particular, we have demonstrated that the vortex may
quantum mechanically tunnel between the two pins. The
time scale of the tunneling is achievable in current experi-
ments if the separation between two pins is of the order of a
few healing lengths. If realized experimentally, this will
demonstrate unambiguously the possibility of macroscopic
quantum tunneling.
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