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We consider the motion of a matter-wave bright soliton under the influence of a cloud of thermal
particles. In the ideal one-dimensional system, the scattering process of the quasiparticles with the soliton
is reflectionless; however, the quasiparticles acquire a phase shift. In the realistic system of a Bose-
Einstein condensate confined in a tight waveguide trap, the transverse degrees of freedom generate an
extra nonlinearity in the system which gives rise to finite reflection and leads to dissipative motion of the
soliton. We calculate the velocity and temperature-dependent frictional force and diffusion coefficient of a
matter-wave bright soliton immersed in a thermal cloud.
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Solitons are localized waves that propagate without
spreading and attenuation. They appear from classical
systems like ocean waves to optics and quantum systems
like Bose-Einstein condensates (BEC) of atomic gases. A
BEC of a dilute atomic gas with attractive two-body inter-
actions in three dimensions (3D) is unstable and collapses
[1]. In one dimension (1D), however, a BEC with attractive
interaction is stable against collapse and forms a self-
bound particlelike object known as a bright soliton.
Recently, BEC bright solitons were observed in quasi-1D
waveguide traps at Rice University [2], at ENS in Paris [3],
and at the University of Heidelberg [4].

One of the most important features of solitons is the
nondispersive motion over long distances [5]. BEC soli-
tons, moreover, cannot bind thermal excitations [6] and
thus may separate from the cloud of thermal atoms that is
always present in BEC experiments. Because of these
properties, BEC solitons may find applications in quantum
interferometry experiments. Matter-wave interferometers
with BECs are expected to boost the precision measure-
ment of inertial forces by several orders of magnitude as
compared to present-day technology with optical lasers or
cold atoms. Thus it is very important to understand to
which extent the interactions of a BEC with a thermal
cloud can affect the precision of interferometric measure-
ments. At the same time, a quantitative understanding of
thermal effects may also allow us to precisely measure
temperatures in the nK regime.

In this Letter we discuss how dissipative effects in the
motion of a soliton in a thermal cloud can arise due to the
3D nature of the BEC in a tight waveguide. We consider
the scattering of quasiparticles by the quasi-1D matter-
wave soliton [7], taking account of the transverse degrees
of freedom. Muryshev et al. considered the interaction of
quasiparticles with dark BEC solitons and found that these
lead to acceleration and eventually disintegration of the
soliton in a thermal environment [8]. Following a similar
line of arguments, we show that the quasiparticles scatter-
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ing on a bright soliton have a finite probability of reflection
only due to the transverse extent of the soliton, which
finally gives rise to dissipative effects. The bright soliton
experiences friction and diffusive motion in a thermal
cloud but maintains its integrity in contrast to dark solitons
which disintegrate. Diffusive processes in optical solitons
due to a different mechanism have already been studied in
Ref. [9].

A BEC in a waveguide with a harmonic transverse
confinement is well described by the Gross-Pitaevskii
(GP) equation:
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where i is the macroscopic wave function of the conden-
sate, w is the frequency of transverse trapping potential,
and a is the 3D scattering length. In the quasi-1D limit the
effective dynamics of the system takes place along the free
axis (x axis) without exciting the transverse modes. The
quasi-1D limit can be achieved when the mean field inter-
action is smaller than the radial excitation frequency,
47h?|al|y|?>/m < hw. Aiming at an adiabatic separation
of slow longitudinal and fast transverse motion we can
write the full 3D wave function assuming cylindrical
symmetry as (7, 1) = ¢(x, ) x(p, x, 1). Here, ¢ is the
1D (longitudinal) wave function and y is the radial
wave function with the normalization convention
[IxI*2mpdp = 1 and [|$|*dx = N, where N is the num-
ber of bosons in the system. In the adiabatic approximation
we now assume that the radial wave function y weakly
depends on the slow variables x and ¢ and the derivatives of
x can be neglected. After substituting the ansatz for the
wave function into Eq. (1), we obtain the following adia-
batically decoupled equations for the longitudinal and the
transverse wave functions:

h2
ihd,p = —~—a3p + ad, (2)
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where we have introduced the transverse chemical poten-
tial &, which has to be found from the ground state solution
of Eq. (3) as a function of the linear density n(x, r) =
| (x, 1)|?. Physical solutions of Eq. (3) are found only if
—an < 0.47 [10], otherwise transverse collapse occurs
[11]. In the following we will be interested in the quasi-
1D regime of small an and expand fi(an) in a power series.

In the quasi-1D limit, when |a|n < 0.47, the radial
wave function y will be close to the ground state of the
2D harmonic oscillator with a Gaussian profile. We can
expand y in terms of the radial eigenmodes ¢,(p),
x(p, x) = @olp) +3,C,(x)@,(p). The coefficients C,
are small and can be calculated perturbatively. The trans-
verse chemical potential 4 can be obtained by using
perturbation theory: @i = hw + gn — g,n> + - -+, where
g = 2ahw and g, = 241n(4/3)a’hw. The constant g, was
calculated first in Ref. [8]. Corrections to the coupling
constants g and g,, beyond the GP approach presented
here have been found in Ref. [12]. We obtain the following
effective equation describing the condensate in the quasi-
1D limit:

[=(@?/2m)o7 + gl — g2l '] = . (4

This is a nonlinear Schrédinger equation with a cubic and a
quintic nonlinearity, as used before in Ref. [8]. An estimate
from the 3D GP equation (1) gives stability of a single
soliton solution if N|a|/I < 0.627 is fulfilled [13].

Without the extra nonlinearity associated with g,
Eq. (4) is integrable. For attractive interactions at
a <0, the bosons form a self-bound particlelike state
known as a bright soliton with the wave function ¢(x) =
JN/2bsech(x/b) and the chemical potential u =
—h%/2mb?, where b = I?/(N|al). We notice that for a
weak soliton parameter N|a|/l < 1, the system becomes
quasi one dimensional (b = ).

A soliton can be considered as a macroscopic particle of
mass mN, moving in the bath of thermal excitations.
Dissipative motion of the soliton arises due to the scatter-
ing of thermal atoms. Here we consider the interaction of
thermally excited particles with the soliton within the
Bogoliubov formalism [7],

[Ho + H 1y = e(b)y, &)

where ¢ = (u, v) is a two component vector of particle (i)
and hole (v) amplitudes, and € is the quasiparticle energy.
The unperturbed Hamiltonian H,, and the perturbation H;
are given by
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where  Vy =2g|l¢l> = 3g,lpl*  and  V, =g¢? -
28,1 p%. The scattering states have energy e(k) =
% + |u|. In one dimension, neglecting the extra nonline-
arity (g, = 0), we obtain the exact solution of the scatter-

ing states:

u, = A(k)[kb + itanh(x/b) > e~ (8)

v, = A(k)sech?(x/b)e’**, 9)

where A(k) = 1/(k*b*> — 1) is a normalization constant.
The transmittance is given by

t = (kb + i)?/(kb — i), (10)

and the transmission probability is [t|> = 1. Hence, the
quasiparticles scatter without reflection on the soliton but
only acquire a phase shift in the scattering process.
Reflectionless scattering on a soliton in the integrable non-
linear Schrodinger equation (4) (with g, = 0) is a well-
known result of mathematical soliton theory and is also
found in an exact solution of the quantum many-body
model in the limit of large particle number [6]. In the
quasi-1D limit, the soliton thus becomes transparent and
exhibits dissipationless motion in a thermal cloud.

Now we consider the scattering problem of quasipar-
ticles in the presence of an extra nonlinearity. This non-
linear term breaks the integrability and leads to a finite
reflection probability. For sufficiently small linear particle
density n << |a|, we can take the coupling constant g, as a
small parameter and solve the scattering problem using
Green’s function techniques. In order to solve Eq. (5) for
the particle amplitude u we construct the Green’s function
for the u component, which is given by G(x —x') =
(m/h?k) sin(k|x — x'[). Since the potential is symmetric,
the scattering states can be taken obeying even or odd
symmetry. The Lippmann-Schwinger equation for the par-
ticle channel can be written as

Uplg = uS/U + fGl(x = XV (N, 0 (x")dx’!

+f@@—wwwmumwc (11)

where u,, denotes even [odd] wave functions of the
particle states and uQ = cos(kx), [uQ = sin(kx)]. The
most general wave function has the form: u, =
Auf + Buj. Asymptotically this wave function becomes
lim,_,_u; = e* + re”* and lim,_,,u; = te’™*, where
[#]*> and R = |r|? are the transmission and the reflection
coefficient, respectively. We obtain R(k) by solving
Eqgs. (4) and (5) numerically and matching with the asymp-
totic solutions, see Fig. 1.

An analytical estimate of the reflection coefficient can

be obtained from Eq. (11) by approximating ¢ =
VN/2bsech(x/b) and u,;, and v,,, with the properly
symmetrized solutions (8) and (9). This becomes exact
for g, = 0 and relies on g, being a small parameter. The
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FIG. 1. Reflection coefficient of a soliton as a function of
momentum, for Nla|/l =0.1,0.2,0.3,0.4 (from smaller to
larger values of reflection coefficient). The dotted line shows
the analytical estimate (12) for N|a|/l = 0.2.

reflection coefficient is given by R = |r|> and

I, +1_

=

(12)

where the terms 7, and /_ are

2 kb

with Q= (x) = 1/3 + x> = (1 + x*)>@x/[3 sinh(7x)]. The
Lippmann-Schwinger formalism gives the correct limiting
behavior for small kK where R — 1, in contrast to a simple
Born approximation. Total reflection is expected whenever
extra nonlinearity breaks the special resonant conditions
leading to reflectionless scattering at k = 0, as generically
found in one-dimensional scattering [14]. This case is very
different from phonons scattering on a perturbed dark
soliton, which becomes transparent for small k as found
in Ref. [8]. This anomalous scattering behavior arises from
the presence of a Goldstone mode at € = 0 governing the
long wavelength (k = 0) phonon scattering, even in the
presence of perturbations in the nonlinearity. For bright
solitons, on the contrary, the Goldstone modes at € = 0 are
separated by an energy gap of |u| from the scattering
continuum at e(k) = % + | x| and therefore do not influ-
ence the scattering at k = 0. The approximation (12) re-
produces the qualitative features but slightly overestimates
the exact values of R as seen in Fig. 1.

The reflection coefficient R is a function of dimension-
less momentum kb and the soliton parameter N|a|/l. Once
we know the interaction of particles with a soliton from the
microscopic theory, we can describe its motion in the bath
of thermal particles at a given temperature. Because of its
large mass mN, we may treat the soliton as a classical
particle. The thermal atoms impart a momentum to the
soliton in the scattering process. While the soliton is at rest,
the force on the soliton cancels on the average but, never-
theless, the stochastic nature of the force introduces a
diffusive motion of the soliton. For a moving soliton, the
average force imparted by the thermal particles does not
vanish and gives rise to a frictional force on the soliton. To

I. = IZA(k)[kb + 61n(4/3) 14l Qi(kb)}

include the dissipative effects in the soliton’s motion we
write down the kinetic equation for the phase space distri-
bution function f(p, g, ) of the soliton’s center of mass
coordinate:

d d (0H J (0H
YN IO
ar dp\dq dg\dp
where, for small momentum transfer, the collision integral
can be written as: I,,; = %[Af + %(Bf)]. The terms A

and B give rise to friction and diffusion of the soliton,
respectively. The frictional force A can be computed from
the following expression,

dk

_ _ de(k)
A—[;{ZMW@

hok

where N(E, kgT) describes the distribution of thermal
particles in the frame of the moving soliton with velocity
v and the energy E takes the value E(k) = (hk —
mv)?/2m. In each collision, the particle with momentum
k has a probability R to reflect back and transfer the
momentum —2#k to the soliton. This momentum transfer
multiplied with the number of particles coming from each
direction per unit time gives rise to a frictional force. When
the soliton is at rest, the momentum transfer on each
direction cancels on the average and as a result the friction
vanishes.

At finite temperatures the thermal atoms are distributed
according to the rules of quantum statistics. Although
thermal equilibrium may be reached in an external trap
[15], the subtle conditions of equilibrium are not neces-
sarily fulfilled in a dynamical experimental situation. Here,
we consider the motion of a soliton relative to a signifi-
cantly warmer thermal cloud of atoms. We thus can assume
that the thermal cloud obeys a classical Boltzmann distri-
bution N(E, kzT) ~ exp(—E/kgT). Dissipative effects on
the soliton are stronger with increasing density or increas-
ing temperature of the thermal cloud. We consider the
situation where 10* thermal particles are confined within
a length L = 50b (= 70 um for ENS soliton with b =
1.4 pwm), with a density of the thermal gas of nb = 200
(= 10'2/cm?) and the velocity distribution of the thermal
particles being controlled by changing the temperature.
Within a certain range of the soliton velocity the frictional
force increases linearly with velocity as seen in Fig. 2.
When the velocity is increased further, nonlinear effects
take over and the force decreases.

The diffusion parameter of the transport equation reads

de(k)
hok

T

‘N(E, kgT), (14)

B= f dk 2(hk)*R(k)

27

‘ N(E kgT).  (15)

This term describes the velocity fluctuations of the soliton
and gives rise to a diffusion in the momentum space. A
graph is shown in Fig. 3.

So far we considered only the low-energy elastic scat-
tering of thermal quasiparticles on the soliton. To restrict
our discussion to the quasi-1D case, we neglected the
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FIG. 2. (a) Logarithm of the friction force A in units of hw /1 as

a function of temperature for soliton velocity V = 0.1h/mb,
density of thermal gas nb = 200, and soliton parameter
Nla|/l = 0.2 (solid line), 0.3 (dashed line), 0.4 (dotted line).
(b) Friction force as a function of velocity, for N|a|/l = 0.3,
kpT /|| = 0.5 [units and parameters as Fig. 2(a)].

higher energy radial excitations ~hw. As an additional
effect, the soliton can radiate particles if the colliding
quasiparticle has higher energy than the binding energy
||. Also nonlinear collective motion of the thermal cloud
and the soliton is possible [16]. However, the elastic scat-
tering process discussed in this work will dominate if the
condition kzT < |u| < he is fulfilled. A tight radial trap-
ping potential is suitable to avoid inelastic scattering pro-
cesses. In the ENS experiment [3], the oscillator length of
radial confinement was [ = 1.4 pm. For a soliton parame-
ter Nla|/l = 0.4, the sound velocity at the center of the
soliton becomes ¢, = 2.5 mm/s. If a soliton with N ~ 10°
particles moves with a velocity 0.1cg, then it decelerates
5.01 mm/s? due to the frictional force. Finally it stops after
0.05 s, traveling a distance of 6 wm. The slowing down of a
bright soliton can thus be observed experimentally in a
realistic parameter regime.

For small velocities, A = yv and the moving soliton
stops after a time scale 7 = mN/vy. Because of the diffu-
sion process the energy of a resting soliton changes as £ =
(B/2y)[1 — e~2v/mN] For t < 7, the energy of the soliton
increases and finally it reaches a steady state with energy
E = B/2y. Bright solitons immersed in a thermal bath can
provide an ideal system to study thermally activated tun-
neling over a barrier [17] and to study the dynamics of
soliton trains at finite temperature [2], where dissipative
motion may result in soliton fusion.

In conclusion, we have investigated the effects of a
thermal environment on the dynamics of bright matter-
wave solitons and have calculated the frictional force and
diffusion coefficient in a microscopic approach. Friction
and diffusion effects occur due to the deviation from the
quasi-one-dimensional limit. Both effects can be con-
trolled by the parameters of the system and can be made
small if unattenuated propagation of solitons is desired.
Thus bright solitons are very interesting for future appli-
cations in high precision quantum interferometry experi-
ments. On the other hand, the parameters can be chosen
such that the dissipative effects become accessible to ex-
perimental observation with currently available tech-

ko T/Iu)

FIG. 3. Logarithm of the diffusion coefficient B (in units of
hmw?) of a soliton with zero average velocity as a function of
temperature for the soliton parameters N|a|/l = 0.2 (solid line),
0.3 (dashed line), 0.4 (dot-dashed line), and a density of the
thermal gas of nb = 200.

niques, e.g., to study the dynamics of a multisoliton
system in a thermal environment.
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