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Abstract
A time-dependent Kohn–Sham scheme for 1D bosons with contact interaction
is derived based on a model of spinor fermions. This model is specifically
designed for the study of the strong interaction regime close to the Tonks gas. It
allows us to treat the transition from the strongly interacting Tonks–Girardeau
to the weakly interacting quasicondensate regime and provides an intuitive
picture of the extent of fermionization in the system. An adiabatic local-
density approximation is devised for the study of time-dependent processes.
This scheme is shown to yield not only accurate ground-state properties but
also overall features of the elementary excitation spectrum, which is described
exactly in the Tonks-gas limit.

1. Introduction

Density-functional theory (DFT) provides a unique framework for the treatment of quantum
many-body systems beyond the realm of perturbation theory. While ground-state DFT, based
on the theorems of Hohenberg, Kohn and Sham [1, 2] deals with the energy and the density
profile of inhomogeneous ground states, the time-dependent generalization of these theorems
by Runge and Gross [3] in principle allows the study of time-dependent processes and excited
states. Further development of the time-dependent DFT has shown that it is advantageous to
consider functionals simultaneously of the density and the current [4] in order to go beyond
the simplistic adiabatic approximation, and the microscopic Navier–Stokes equations for the
electron fluid have been derived elegantly in this way [5].

In this paper we will apply DFT to the study of fermionization in the system of 1D bosons
with contact interaction. In the case of infinite interaction strength, the model is also known
as the Tonks–Girardeau gas [6] and maps exactly to the system of non-interacting spinless
fermions with identical energy spectrum and single-particle density. In fact, it has been shown
by Cheon and Shigehara [7] that the exact mapping between the original Bose system and
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a Fermi system can be extended to arbitrary interaction strength at the expense of a highly
singular interaction in the fermionic picture. For the homogeneous Bose gas, exact solutions
for stationary states at arbitrary interaction strength can be found using the Bethe ansatz [8–10].
Although the exact solutions show a continuous transition between the perturbative regime of
weakly interacting bosons and the strongly correlated, fermionized regime, they do not prove
very useful for the study of time-dependent processes or inhomogeneous situations. Neither
do they provide us with a simple, intuitive picture of how strong the degree of fermionization
is in a given system. The crossover from the quasicondensate to the fermionized Tonks gas
has also been studied in [11, 12]

Inspired by the works of Haldane [13], Sutherland [14] and others on the concept of
exclusion statistics describing a crossover between fermionic and bosonic statistics in 1D
systems, we study a model which explicitly allows this transition and provides an intuitive
picture of the degree of fermionization. In order to devise a practical scheme for treating
time-dependent and inhomogeneous systems we employ DFT and develop a time-dependent
Kohn–Sham formalism based on the auxiliary model system of N non-interacting spin-(ν−1)/2
fermions. This model is chosen because the spin degeneracy may simulate the level attraction
or the bunching of single-particle quasi momenta in the interacting bosonic system [8]. The
interaction energy of the Bose system is simulated by the kinetic energy of the spin-degenerate
fermions. In this work we will study the model in the simplest and most generic approximation:
the adiabatic local-density approximation (ALDA). The limiting case of infinite interaction
strength is obtained easily and is treated exactly with ν = 1. The opposite limit of weak
interaction can also be treated accurately within the proposed formalism with ν = N where
the perturbative Gross–Pitaevskii and Bogoliubov equations are recovered asymptotically. In
the general case of arbitrary interaction strength, the spin degeneracy ν is fixed by requiring the
correct low-energy asymptotics of the excitation spectrum, which is analysed in the framework
of linear-response theory. The resulting model is suitable for the study of time-dependent
processes in inhomogeneous 1D Bose gases close to the Tonks-gas limit. The properties of
this approximate model are analysed and systematic improvements are suggested.

Before developing the general theory we want to point out that DFT is not commonly
used to discuss the theory of ultra-cold bosonic gases although many standard approximations
can be derived in this framework. Only a few papers, therefore, explicitly suggested applying
DFT in this context, see e.g. [15–21], where the time-dependent DFT of superfluids [20, 21] is
particularly far developed. The case of strongly interacting bosons in 1D has been considered
by Kolomeisky et al [17] who suggested a generalization of the Gross–Pitaevskii equation of
the following form:

ih̄
∂

∂t
ψ(x, t) =

{
− h̄2

2m

∂2

∂x2
+ vext(x, t) + φ(n(x, t))

}
ψ(x, t). (1)

Here, ψ(x, t) is a time-dependent complex field and n(x, t) = |ψ(x, t)|2 is the one-
dimensional density. The function φ(n) provides the nonlinear term. Kolomeisky et al
suggested using the chemical potential of the Tonks–Girardeau gas,

φ(n) = φ(TG)(n) ≡ π2

3
n2 (2)

whereas the Gross–Pitaevskii equation is recovered for

φ(n) = φ(GP)(n) ≡ g1Dn. (3)

We will refer to equation (1) as the bosonic LDA because this equation may be derived as
a Kohn–Sham equation in the ALDA using a Bose condensate as the auxiliary non-interacting
system for the Tonks gas and the weakly interacting Bose gas, respectively. The same equation
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also applies for 1D bosons with arbitrary interaction strengths and was used by Öhberg and
Santos [18]. In this case, φ(n) represents the exactly known chemical potential of the Lieb–
Liniger model (at T = 0). The bosonic LDA equation (1) is almost identical to a set of
hydrodynamic equations [22, 23] derived from general hydrodynamic arguments assuming
local equilibrium, the only difference being a kinetic energy pressure term (see e.g. [24]).

It may be questioned whether the choice of a Bose condensate as the auxiliary non-
interacting system of the Kohn–Sham formalism is the ideal starting point for treating a
strongly interacting Bose gas in 1D which is not condensed [6, 25]. Indeed it has been
shown in the Tonks–Girardeau limit of impenetrable point bosons that phase coherence is
grossly overestimated by equation (1) leading to wrong predictions for interference properties
[26, 27]. Phase and density are conjugate variables in a quantum field theory and may coexist
in the weakly interacting Bose condensate, which is close to a classical field. It is known
already in the perturbative regime that phase fluctuations are very important in 1D [12, 28].
In the ultimate limit of the Tonks–Girardeau gas, the concept of phase loses its meaning and
the governing equations should rather be based on the density alone. For this reason the
hydrodynamic approximations employed in [22, 23], where the concept of a phase does not
appear, are on a safer footing than the bosonic LDA equation of Kolomeisky where phase
coherence is built into the theory.

Moreover, the excitation spectrum and density of the Tonks–Girardeau gas are identical to
the corresponding properties of a gas of independent spinless fermions due to the Bose–Fermi
mapping. Even in his original paper [8], Lieb pointed out that the fermionic character of
the excitation spectrum prevails at finite interaction strength and introduced two elementary
branches of excitations which he called type I and type II. Type I excitations result from
exciting a particle from the edge of the 1D Fermi sphere to an unoccupied orbital. Thus
type I excitations are the particle–hole excitations of the highest possible energy for a given
momentum. Type II excitations, in contrast, are the excitations of the lowest possible energy
for a given momentum. They can be seen as taking a particle from the inside of the Fermi
sphere and putting it to the first free orbital on the outside.

Only type I excitations are found by standard bosonic methods such as Bogoliubov
perturbation theory or linear response in equation (1) whereas type II excitations and the
fermionic character of the spectrum remain hidden. We want to mention at this point that a
possible connection between type II excitations and dark solitons in variations of equation (1)
has been pointed out in the literature [17, 29–31].

2. An exotic Kohn–Sham scheme

2.1. Variational principles

The basic scheme of DFT is the Hohenberg–Kohn variational principle. It allows the ground-
state energy E0 and one-particle density n(x) of a given many-particle system to be found by
variationally minimizing the energy functional

Ev[n] = FHK[n] +
∫

vext(x)n(x) dx. (4)

Here vext(x) is the external potential and the Hohenberg–Kohn functional FHK[n] is universal
in that it does not depend on the external potential. The scheme of Kohn and Sham proceeds
by partitioning the unknown functional FHK[n] as

FHK[n] ≡ Ts[n] + EKS[n] (5)

where Ts[n] is the kinetic energy of a fictitious, auxiliary system of particles interacting only
with a single-particle potential vs , which has the same density n(x) as the original system.
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The external potential vext is contained in vs = vext + vKS where vKS[n] = δEKS/δn is a
universal functional of the density depending only on the structure and internal interactions
of the original and auxiliary many-body problems but not on the external potential. Once
an (approximate) expression for vKS[n] has been found, the density of the system in a given
external potential vext is easily found by solving the Kohn–Sham equations, a set of nonlinear
independent-particle equations. Kohn and Sham in their original publication [2] used the
auxiliary system of non-interacting spin-1/2 fermions while being interested in systems of
interacting electrons. However, it has been pointed out that the choice of the auxiliary system
is somewhat arbitrary and rather a matter of convenience than dictated by laws of nature [32].

2.2. Hamiltonian

We start with the usual Hamiltonian for N bosons in 1D with point interactions of [8],
augmented with a possibly time-dependent external potential vext(x, t):

H =
N∑

i=1

{
− h̄2

2m

∂

∂xi

+ vext(xi, t)

}
+ 2g1D

∑
i<j

δ(xi − xj ) (6)

where g1D = h̄2/(m|a1D|) is the interaction parameter and a1D is the one-dimensional
scattering length [11].

The exact many-body eigenstates and the complete excitation spectrum of the Hamiltonian
(6) in the homogeneous system where vext = 0 with periodic boundary conditions have been
found by Lieb and Liniger using the Bethe ansatz [8, 9]. The ground-state energy is

Ehom
0 = N

h̄2

2m
e(γ ) (7)

where e(γ ) is the dimensionless energy per particle in the Lieb–Liniger model and γ =
2/(n|a1D|) is the single dimensionless parameter of the homogeneous gas with the one-
dimensional single-particle density n = N/L of N particles in a box of length L. The function
e(γ ) is defined as the solution of a Fredholm equation and can be obtained numerically to any
desired accuracy. The chemical potential of the homogeneous Lieb–Liniger gas at density n
is given by

µLL(n) = d

dN
Ehom

0 = 2h̄2

m|a1D|2 f (γ ) (8)

where f (γ ) = [3e(γ ) − e′(γ )]/γ 2 is a dimensionless function. The asymptotic behaviour of
e(γ ) and f (γ ) is known for large and small γ [8] and, furthermore, the functions are tabulated
for intermediate values of γ in [22]1.

2.3. Functionals and Kohn–Sham equations

Consider a physical system of N non-interacting and indistinguishable fermions with spin
(ν − 1)/2. For simplicity let us consider the case where ν divides N and assume that all

1 The dimensionless chemical potential f (γ ) is known to have the expansion [8] f (γ ) = π2γ −2 − 16π2

3 γ −3

+ O(γ −4) for γ → ∞ and f (γ ) = 2γ −1 − 2
π

γ − 1
2 + O(γ 1) for γ → 0. We give the following convenient rational

approximation f (γ ) ≈ [π2(48 + 2γ 2 + 3γ 3)]/{3γ [8π2 + 8π
√

γ + γ (2 + γ )3]}, which deviates with a maximum
relative error of 0.12 from the numerical result at γ ≈ 2. It has the same expansion as given above for γ → ∞. For
small γ it introduces an error of order O(γ 1/2).
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orbitals are non-degenerate. In the ground state Ñ orbitals will be occupied with ν particles
each when νÑ = N . The kinetic energy is

Ts[n] = − h̄2

2m
ν

Ñ∑
i=1

∫
ϕ∗

i (x)
∂2

∂x2
ϕi(x) dx.

The Kohn–Sham equations are found by functional differentiation with respect to ϕ∗
i (x):

εiϕi(x) =
{
− h̄2

2m

∂2

∂x2
+ vext(x) + vKS[n](x)

}
ϕi(x). (9)

The potential vKS[n] = ∂EKS[n]
∂n

is the mean-field potential of Kohn–Sham theory and represents
the unknown rest of the functionals. In regular electronic DFT, vKS[n] would be written as
a sum of the Hartree potential and the exchange-correlation potential. The density is found
self-consistently by summing over all occupied (∈) orbitals

n(x, t) = ν
∑
i∈

|ϕi(x, t)|2.

The ground-state density n(x) is obviously time independent and only the Ñ levels with the
lowest energies εi will be occupied. The generalization to the corresponding time-dependent
Kohn–Sham equations along the lines of the Runge–Gross theorems [3] is obvious

ih̄∂tϕi(x, t) =
{
− h̄2

2m

∂2

∂x2
+ vext(x, t) + vKS[n](x, t)

}
ϕi(x, t). (10)

We note that equation (10) is still exact. We now proceed with approximating vKS[n] in a
local-density approximation.

To this end, the remaining unknown term EKS[n] is approximated by EKS[n] ≈
ELDA

KS (n)= Ehom
0 − T hom

s , where T hom
s is the non-interacting kinetic energy of the homogeneous

gas. It is simply found by summing the contributions from the Ñ orbitals in the Fermi sphere
and multiplying with the degeneracy ν

T hom
s = ν

h̄2

2m

(Ñ−1)/2∑
k=−(Ñ−1)/2

(
2πk

L

)2

= N
h̄2π2n2

6mν2

(
1 − 1

Ñ2

)
(11)

where L is the length of a box with periodic boundary conditions, n = N/L where n is the
line density and Ñ has been assumed odd.

Before taking the derivative ∂FHK[n]/∂n in order to find an expression for vKS we have
to consider what to do with the term 1/Ñ . If Ñ = 1 the contribution from the kinetic energy
vanishes and we arrive at the bosonic LDA of equation (1). However, if Ñ is of the order of
N, we may disregard the term 1/Ñ in the limit of large N. In fact it is not consistent to keep
this term if we approximate the Lieb–Liniger energy with the bulk value as this is only valid
in the limit N → ∞. In the following we will therefore drop this term and arrive at

vLDA
KS (x, t) = d

dN

(
Ehom

0 − Ekin
)∣∣

n=n(x,t)

= µLL(n) − h̄2π2n2

2mν2
(12)

where the chemical potential µLL(n) of the homogeneous (Lieb–Liniger) gas at density n
is given by equation (8). The remaining parameter ν will be determined by a consistency
condition on the excitation spectrum that will be derived in the following paragraph.



S292 J Brand

0.001 0.01 0.1 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

~ N
/N

γ

Figure 1. The parameter Ñ/N from equation (14) indicates the degree of fermionization in the
system. Here it is plotted as a function of the dimensionless interaction strength of the Lieb–Liniger
model γ .

2.4. Excitation spectrum from linear-response theory

Lieb pointed out that the excitation spectrum of the 1D Bose gas resembles that of the 1D Fermi
gas and likewise has a particle–hole type of structure—at any value of the interaction strength
[9]. The spectrum of the homogeneous gas may be equally well described by two branches
of elementary excitations εI(k) and εII(k). Both branches have the same slope for k → 0
and therefore lead to the same speed of sound vs = dεI/dk|k=0 = dεII/dk|k=0. Bogoliubov
perturbation theory yields an approximation only for the branch εI(k). In the time-dependent
Kohn–Sham model introduced above, a particle–hole type excitation spectrum arises naturally.
The elementary excitations may be found by solving for the resonant frequencies of the time-
dependent equation (10) in the linear-response limit. The resulting excitation energies are
given by differences of the orbital energies of the stationary Kohn–Sham orbitals modified by
interaction contributions from the nonlinear mean-field vLDA

KS .
The derivation of the linear-response equations is the same as for the LDA in the much

studied electronic systems and very similar to the time-dependent Hartree–Fock or random-
phase approximation (see, e.g. , [33]) and is summarized in the appendix. Here we want to note
that the linear-response correction to the spectrum of the Kohn–Sham system is proportional
to the derivative dvKS/dn. From the explicit linear-response equations for the homogeneous
system it can be seen that type I and type II excitations have a different slope at k = 0, except
for the situation where

v′
KS(n) = 0. (13)

This argument is detailed in the appendix where the linear-response equations in the small
momentum limit are solved exactly. Using expression (12) for vKS we easily find the correct
value for the number of modes in the fermionic Kohn–Sham equations (10)

Ñ = N

√
− γ 3

2π2
f ′(γ ). (14)

The value of Ñ/N ≡ 1/ν is a measure of the degree of fermionization in the system. When
Ñ/N = 1 the system is completely fermionized whereas Ñ/N → 0 indicates a purely bosonic
system with a Bose condensate as the ground state. The functional dependence of Ñ/N on
the interaction strength γ is shown in figure 1.

Qualitatively the picture agrees with the results of Girardeau and Wright [34] who
modelled the BEC–Tonks crossover by a mixture of a pair-correlated Bose liquid with a
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non-interacting Fermi gas in a variational framework. We would like to point out, that Ñ is
a global parameter whereas γ is local and varies in an inhomogeneous system. Therefore
condition (14) should be used with care and we expect the present model to be most useful for
nearly homogeneous systems.

Although it would be desirable to find an approximation for the condensate fraction
from our model, it should be noted that Kohn–Sham DFT as used here generally does not
model the many-body wavefunction but gives direct access only to energies and the diagonal
part of the single-particle density matrix. The information about off-diagonal long-range
order and condensate fraction, however, is contained in the inaccessible off-diagonal part of
the single-particle density matrix. Nevertheless it should be pointed out that the fractional
occupation of the Kohn–Sham orbitals Ñ−1 in our model, which is reminiscent of a condensate
fraction, vanishes in the thermodynamic limit where N → ∞ at γ = const consistent with the
general result that there is no Bose condensate in the T = 0 homogeneous interacting Bose
gas [35, 36].

An important question related to the condensate fraction is local phase coherence
[26, 27]. From the construction of the Kohn–Sham model it appears difficult to define
expectation values for the phase operator in this scheme. However, the time-dependent
DFT does contain information about local phase coherence to the degree that is necessary to
correctly describe the suppression of interference patterns in the dynamics.

The approximation scheme defined by equations (10), (12) and (14) is the main subject
of this paper and shall be referred to as fermionic LDA. In the remainder of this paper we will
analyse the predictions of this model and compare with the exact solutions of the Lieb–Liniger
model and other approximations.

3. Properties

3.1. Excitations of the homogeneous gas

It is interesting to calculate the dispersion for the elementary excitations of type I and II, which
can be done analytically since the linear-response corrections vanish due to equation (13). In
the homogeneous gas, the mean field vKS is constant and the Kohn–Sham single-particle
energies become

εp = 2π2h̄2

mL2
p2 + vKS

where p is any integer and h̄kp = h̄p2π/L is the momentum. In the ground state all orbitals
with p < F are occupied where F = (Ñ − 1)/2 is the index of the Fermi momentum h̄kF .
The energies of particle–hole excitations of momentum h̄kq are given by the difference

εp − εp−q = h̄2

2m
n2 4π2

N2
q(2p − q). (15)

Figure 2 illustrates the discrete excitation spectrum obtained for a finite number of particles
in a box with periodic boundary conditions. Type I and II excitations are the upper and lower
bounds of the elementary excitation spectrum, respectively. The fermionic DFT is seen to
slightly overestimate the energies of type I excitations and underestimate the energies of type II
excitations at large momentum while the correct asymptotes are obtained for small momenta.

From equation (15) we can construct explicit expressions for type I and type II excitations.
Type I excitations are defined by exciting a particle with the Fermi momentum h̄kF into an
unoccupied orbital with p = F + q whereas type II excitations take a particle from inside the
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Figure 2. Excitation energies of a homogeneous system with 25 particles at γ = 16.3.
Dots indicate the particle–hole excitation in the Kohn–Sham model with Ñ/N = 0.8 from
equation (15). The full and dotted lines show the exact type I and II excitations for this finite
system from the numerical solution of Yang’s equation [9, 37], respectively.

Fermi sphere to the lowest unoccupied orbital with p = F + 1. In terms of the dimensionless
momentum

p̃ = h̄kq

h̄n
= 2πq

N
of the excitations we obtain

εI(p̃) = h̄2

2m
n2p̃

[
2π

(
1

ν
− 1

N

)
+ p̃

]
. (16)

Correspondingly we find for type II

εII(p̃) = h̄2

2m
n2p̃

[
2π

(
1

ν
+

1

N

)
− p̃

]
. (17)

Expressions for the elementary excitation spectrum of the interacting gas can be derived
using equation (14). In the thermodynamic limit we obtain

εI(p̃) = h̄2

2m
n2p̃

[√−2γ 3f ′(γ ) + p̃
]

(18)

εII(p̃) = h̄2

2m
n2p̃

[√−2γ 3f ′(γ ) − p̃
]
. (19)

These dispersion relations ought to be compared with the exact ones and with earlier
approximations. First of all we note that both dispersion relations indeed lead to the same
speed of sound

dεI/II

dp

∣∣∣∣
p=0

= cs ≡ 2h̄

m|a1D|
√

−γ /2f ′(γ ) (20)

which is identical to the exact result of the Lieb–Liniger model [8].
The type II excitations, as discussed by Lieb, have the character of elementary excitations

for p̃ � π and at this point the slope dεII/dp̃ vanishes. This condition is strictly fulfilled
by equation (19) only in the Tonks-gas limit γ → ∞ where the equations become exact.
In the general case, εII(p̃) of equation (19) has a maximum at p̃m < π and p̃m approaches
0 as γ → 0. This observation is related to the fact that the umklapp transition of taking
a particle from one side of the Fermi sphere to the other is not described correctly in the
considered fermionic Kohn–Sham model. Therefore our approach is limited to describing
type II excitations in the long-wavelength limit and works best for large γ .
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3.2. Comparison with bosonic LDA

The bosonic LDA of equation (1) is simply the single-mode case with Ñ = 1 of the general
fermionic Kohn–Sham formalism in this paper. The linear-response equations (A.2) for this
case coincide with the Bogoliubov–de Gennes equations derived in [18, 19]. It is instructive
to derive explicit expressions for the excitations of a homogeneous gas, which appear not to
be available in the literature. Equations (A.2) now become

(
εq − ε0 +

Nφ′

L

)
uq +

νφ′

L
vq = h̄ωuq (21)

(
εq − ε0 +

Nφ′

L

)
vq +

νφ′

L
uq = −h̄ωvq (22)

where φ′ = dφ/dn and we have set Xhp = up−h and Yhp = vh−p. With

εq − ε0 = 2π2h̄2q2

mL2

we find the simple solution

h̄ω = ±
√

h̄2k2
i

2m

(
h̄2k2

i

2m
+ 2nφ′

)
. (23)

Only the plus sign contributes here; the minus sign is a well-understood artefact of linear-
response theory. In terms of the dimensionless momentum p̃ = k/n we find the following
final result for the excitation spectrum of the bosonic LDA with φ(n) = µLL(n):

h̄ω = h̄2

2m
n2

√
p̃2(p̃2 − 2γ 3f ′(γ )). (24)

In contrast to the excitation spectrum described by Lieb, there is only one excitation branch
in the linear response of the bosonic LDA. Compared with equations (21) and (22) we see
that the first terms in the expansions around k = 0 and k = ∞ are identical but there are
discrepancies in between. The speed of sound is again the exact result cs as a consequence of
the compressibility sum rule which is obeyed by the LDA.

We can recover the well-known Bogoliubov approximation in the limit of small γ by
expanding f (γ ) = 2γ −1 + O(γ −1/2) to find the usual dispersion relation

(h̄ω)Bog = h̄2

2m
n2

√
p̃2(p̃2 + 4γ ). (25)

The speed of sound becomes

vBog
s = h̄

m
n
√

γ = h̄

m

√
2n

|a1D| .

Figure 3 shows the dispersion relations derived in this paragraph for a particular value of the
interaction parameter γ . It can be seen clearly that the Bogoliubov approximation for the
speed of sound is wrong, which is no surprise as γ is not small in this example. However, it is
also interesting to see that the dispersion derived from the bosonic LDA deviates significantly
from the fermionic LDA.
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Figure 3. Excitation energies in the thermodynamic limit at γ = 16.3. The full and dotted lines
are the excitations within the current Kohn–Sham approach of type I and II from equations (18)
and (19), respectively. The dashed line is the result from the linear response of the bosonic LDA
(24). The dashed dotted line is the Bogoliubov dispersion (25) which shows the wrong slope at
the origin because we are out of the perturbative regime.

3.3. Limits of strong and weak interaction

In the strongly interacting limit we find ν = 1 and Ñ = N . In this case vKS = 0 and the
Kohn–Sham equations become the equations for non-interacting spinless fermions. Due to
the Bose–Fermi mapping theorem of Girardeau this gives the correct description of both the
full excitation spectrum as well as the (time-dependent) diagonal single-particle densities. In
particular we obtain the following equations for type I and II excitations:

εI(p̃) = h̄2

2m
n2p̃ [2π + p̃] (26)

εII(p̃) = h̄2

2m
n2p̃[2π − p̃]. (27)

It is interesting to note that the single-mode equation (1), which here is exactly the equation
studied by Kolomeisky [17], does not have the correct limit of equation (26). Instead we find

h̄ω = h̄2

2m
n2

√
p̃2(p̃2 − 2π2). (28)

This limit underestimates the type I excitation energy. It has been suggested in [17] to link
dark solitary waves in the single-mode equation to the type II excitations. The dispersion
relation, however, gives only qualitative agreement and underestimates the energy at large
momenta. We want to stress that our fermionic LDA, in contrast, yields the exact excitation
spectrum in the Tonks–Girardeau limit.

In the limit of weak interactions we should obtain the single-mode equation with

φ(n) = µLL(n) (29)

as was discussed in the context of the derivation of the Kohn–Sham equations. It was also
discussed that the LDA approach for finite interactions followed in the main part of the paper
cannot describe the limit of the Bose condensate with a single occupied mode correctly. Indeed
it can be seen that equation (18) does not reduce to the Bogoliubov form (25) for small γ ,
although it has the correct low- and high-energy asymptotics. In order to obtain this limit
correctly, a finite size correction should be added to the density functional.
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3.4. Static density profiles in the Thomas–Fermi approximation

A consistency check for the static density profiles found from the fermionic LDA can be
derived by applying a Thomas–Fermi approximation. The idea is to treat the Kohn–Sham
model system of equation (9) as non-interacting Fermions (equivalent to a Tonks gas) in the
external potential vext(x) + vLDA

KS (x). Approximating now the density by the Thomas–Fermi
approximation or hydrodynamic LDA as in [22] leads to exactly the same equations for the
density as the Thomas–Fermi approximation for the original system of interacting bosons
discussed in [22]. This result is independent of the specific choice of Ñ and provides a check
for the consistency of the LDA between the different model systems.

4. Conclusions

In this paper we have devised a variational scheme based on Kohn–Sham DFT to calculate
ground-state properties and time-dependent processes in the system of 1D bosons with short-
range interaction. The scheme will be particularly useful for the regime of strong interaction
where fermionization is important and bosonic perturbation theory ceases to be applicable.
In contrast to the previously suggested nonlinear Schrödinger equation of Kolomeisky [17],
our theory has the correct strong-interaction limit for the density and for ground-state and
excitation energies. The degree of fermionization in the model is determined by requiring
consistency of the low-energy, low-momentum excitation spectrum. Employing the local-
density approximation yields a parameter-free model. Interesting applications and test
cases may arise in situations where coherence properties and long-wavelength excitations
are important. Due to the construction of our model, it is best suited for situations with a
large number of bosons and almost homogeneous densities. A specific example may be the
study of shock waves in the homogeneous gas as studied by Damski [27, 38]. In the decay
of a shock wave, the usual bosonic LDA fails due to the fact that coherence is overestimated.
Exact results are only available for the Tonks–Girardeau limit so far. For finite interaction
strengths, our fermionic LDA can make predictions about the importance of coherences and
numerical studies of this problem are under way. Another situation where the current theory
can be applied is the 1D Bose gas in a weak optical lattice. Interesting questions to study are
the nature of excitations and the phase diagram as well as a comparison with the predictions
of bosonic LDA.

The DFT scheme studied in this paper is based on the careful choice of the kinetic energy
functional determined by the Kohn–Sham auxiliary independent-particle system and the rest
of the functionals were approximated in the ALDA. The next logical step to improve the
performance of our model is to go beyond the ALDA and employ standard correction schemes
based on current-density functional theory [4, 5].
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Appendix A. Linear-response equations

Following the standard scheme of linear-response theory [33] we introduce a time-dependent
perturbation

vext(x, t) = vext(x) + λ[f +(x) e−iωt + f −(x) e−iωt ]
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in equation (10) where λ is small. We look for solutions of equation (10) through first order
in λ. To zeroth order we obtain the stationary equation (9). Up to first order we expect to find
solutions of the form

ϕh(x, t) =

ϕh(x) + λ

∑
p 	∈

(Xhp e−iωt + Y ∗
hp eiωt )ϕp(x)


 e

−iεht

h̄ . (A.1)

Here, the linear response of the occupied orbitals can be expanded in terms of unoccupied
( 	∈ ) orbitals because the time evolution according to the Kohn–Sham equations preserves
the orthonormality of the occupied orbitals to every order in λ. Substituting the expression
(A.1) into the time-dependent equation (10) and equating the first-order terms with different
time dependence separately and finally setting f ± = 0 yields the following equations for
small-amplitude free oscillations around the stationary state:∑

h′∈,p′ 	∈
(Lhph′p′Xh′p′ + Mhph′p′Yh′p′) = h̄ωXhp (A.2)

∑
h′∈,p′ 	∈

(L∗
hph′p′Yh′p′ + M∗

hph′p′Xh′p′) = −h̄ωYhp. (A.3)

In the basis of stationary Kohn–Sham orbitals (i.e. solutions of equation (9)) the matrices read

Lhph′p′ = (εp − εh)δpp′δhh′ + νv′
ph′p′h (A.4)

Mhph′p′ = νv′
pp′h′h, (A.5)

where

v′
ijkl =

∫
ϕ∗

i (x)ϕ∗
j (x)

dvKS

dn

∣∣∣
n(x)

ϕk(x)ϕl(x) dx. (A.6)

A simple basis transformation may be applied to rewrite equations (A.4)–(A.6) in a different
basis, e.g. the coordinate representation. For the specific case of the bosonic LDA with
Ñ = 1 we find the Bogoliubov–de Gennes equations of [18]. In the limit γ 
 1 the regular
Bogoliubov–de Gennes equations of Gross–Pitaevskii theory are recovered.

For studying the homogeneous system where vext = 0 and n is constant we introduce the
usual box quantization with φm(x) = eikqx/

√
L and kq = 2πq/L. We find

εi = h̄2k2
i

2m
+ vKS

and vijkl = δi−k,j−lv
′
KS/L with v′

KS ≡ dvKS/dn. Due to translational symmetry the matrix
equations have a block-diagonal structure and the blocks can be labelled according to the
momentum transfer h̄kp − h̄kh = 2πqh̄/L. By defining Lq

p,p′ = L(p−q)p,(p′−q)p′ we obtain

Lq

p,p′ = (εp − εp−q)δp,p′ +
νv′

KS

L
(A.7)

Mq

p,p′ = νv′
KS

L
. (A.8)

Due to the presence of the Fermi sphere there are restrictions on the possible values of the
indices as kp always has to be outside and kp−q has to be inside.

We now consider the two cases q = 1, 2 explicitly in order to calculate the slopes of
both the type I and type II excitation branches at zero momentum. For q = 1 corresponding
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to the smallest possible momentum transfer, the matrices L and M have one entry each and
equations (A.2) and (A.3) can be recast as a 2 × 2 matrix eigenvalue equation. This equation
can be solved easily to yield the eigenvalues h̄ω1 and −h̄ω1, where (h̄ω1)

2 = α2 + 2ανv′
KS/L

with α = h̄2N2π2/(mL2ν) and only the positive solution is physically relevant. Using
equations (12) and (8) we find that h̄ω1/p1 = cs where p1 = 2πh̄/L is the momentum
transfer for this excitation and cs is the speed of sound in the Lieb–Liniger model given by
equation (20). We would like to point out that this result is independent of ν and can be traced
back to the compressibility sum rule which is granted by the LDA.

We are now going to check this result for the speed of sound by calculating the energies
for the next larger momentum transfer with q = 2 where two particle–hole excitations give
the first possibility of having different slopes for the type I and type II excitation branches. If
both branches have the same slope and yield the same speed of sound, the energy difference
between these two excitations should vanish in the thermodynamic limit. We have solved the
eigenvalue equations (A.2) and (A.3) which are 4 × 4 with a specific symmetry. We omit the
lengthy expressions but note the following observations: one of the solutions is independent
of ν and gives the speed of sound as in equation (20) up to order 1/L. The other solution does
depend on ν and for the difference between the squared slopes we find[(

h̄ω
(1)
2

)2 − (
h̄ω

(2)
2

)2]/
p2

2 = n

2m
v′

KS + O(1/L). (A.9)

We see that this term remains finite in the thermodynamic limit unless v′
KS vanishes,

which gives a stringent criterion for the choice of ν = N/Ñ as discussed in section
2.4. If the criterion of vanishing v′

KS is violated, the model will not only develop phonon
branches with different speed of sound but additionally mean-field instabilities may occur as
indicated by complex eigenvalues of the linear-response equations. In the thermodynamic
limit of the homogeneous case this occurs whenever Ñ is larger than the value determined by
equation (14).
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