Rate of Heating and Cooling

Newton's Law of Cooling

 T_S > T_E : System S cools until it is in thermal equilibrium with E. In an isolated system T_S decreases while T_E increases.

The cooling rate is following the exponential decay law also known as **Newton's Law of Cooling**:

$$
\Delta T = \Delta T_0 e^{-at}
$$

 ΔT falls to 0.37 ΔT_0 (37% of ΔT_0) at time $t = 1/a$)

 \blacksquare ΔT_0 is the temperature difference at the starting point of the measurement (*^t*=0), *T* is the temperature difference at *^t*

Differentiating Newton's law of cooling

 $d\Delta T$ *dt* $=-a\Delta T$ *Rate of cooling* $\sqrt{}$ \backslash \backslash $\bigg)$ $\int \alpha$ *temperature difference T* \int \backslash \backslash $\bigg)$ $\overline{}$

Rate constant *a* **determines how fast** $\Delta T \rightarrow 0$

■ *a* depends on:

□ convection, *h*

 \Box conduction, k

 \Box mass, *m*

□ specific heat, *c*

 Newton cooling law can be rewritten as *ln* ΔT ΔT $_0$ $\sqrt{}$ \backslash \backslash \int = $-at$

By ploting $\ln\left(\frac{\Delta T}{\Delta T}\right)$ against *t* the rate constant *a* can be determined. *ln* ΔT ΔT $_0$ $\sqrt{ }$ \backslash \backslash \int I

For time derivatives a "dot" is used:

$$
\Delta \dot{T} = \frac{d\Delta T}{dt} = -a\Delta T
$$

If we are interested in the rate of the heat released we use *Q* (*^t*) = - $- cm \big[\Delta T_{\rm o} - \Delta T \big]$

 If we assume that *^m* and *^c* approximately stays constant in the cooling process we get

$$
\dot{Q} = \frac{dQ}{dt} = cm \frac{d\Delta T}{dt} = -acm\Delta T
$$

■ Example: Cooling a cup of coffee with milk.

Question: At what time *t* should the milk be added to cool down the coffee more efficiently?

Answer: T_c = 94 °C ideal brewing temperature for coffee T_E = 21 ^oC room temperature T_D = 40 °C ideal drinking temperature of coffee T_M = 4 °C temperature of milk out of the fridge $V_C = 500$ mL volume of coffee V_M = 50 mL volume of milk $c_M = c_C$ specific heat of milk and coffee are the same

Experiment 1: Instant mixture (*t*⁼ 0) of water and milk

$$
Q_{cold} = -Q_{hot} \implies c_M m_M \Delta T_M = -c_C m_C \Delta T_C \implies m_M (T_M - T) = -m_C (T_C - T)
$$

$$
T = \frac{m_M T_M + m_C T_C}{m_M + m_C}
$$

$$
T = \frac{0.5 \text{kg } 94^{\circ}\text{C} + 0.05 \text{kg } 4^{\circ}\text{C}}{0.5 \text{kg} + 0.05 \text{kg}} = 85.81^{\circ}\text{C}
$$

Experiment 2: Milk is added at $t_1 > 0$ such that $T=T_D$ at t_1 . Temperature of coffee at mixture time *t* 1:

$$
T_C(t_1) = \frac{m_M (T_D - T_M) + m_C T_D}{m_C} = 43.6^{\circ} \text{C}
$$

The question now is whether water cools faster from 85.81^{o} C to 40^{o} C or from 94^{o} C to 43.6^{o} C .

Newton's Law

$$
T(t) = T_E + (T_i - T_E)e^{-at} \Rightarrow t = -\frac{1}{a} \left[ln(T - T_E) - ln(T_i - T_E) \right]
$$

We do not know the rate constant *a*, therefore we use $(T_E=20^{\circ}C)$

Exp.1:
$$
t_1 = -\frac{1}{a} \left[ln(T_1 - T_E) - ln(T_{1,i} - T_E) \right]
$$
 $\frac{T_{1,i} = 85.8 \text{ °C}}{T_1 = 40.0 \text{ °C}}$

Exp.2:
$$
t_2 = -\frac{1}{a} \left[ln(T_2 - T_E) - ln(T_{2,i} - T_E) \right]
$$
 $\frac{T_{2,i} = 90.0 \text{ }^{\circ}\text{C}}{T_2 = 43.6 \text{ }^{\circ}\text{C}}$

where 1 and 2 stands for experiment 1 and 2. We divide both equations:

$$
\frac{t_1}{t_2} = \frac{\left[\ln \left(T_1 - T_E \right) - \ln \left(T_{1,i} - T_E \right) \right]}{\left[\ln \left(T_2 - T_E \right) - \ln \left(T_{2,i} - T_E \right) \right]} = 1.046
$$

Therefore $t_1>t_2$ and experiment 2 is about 4.6% faster.

Kinetic Theory of the Gases

 Higher temperature in a gas translates into higher kinetic energies of the gas atoms or molecules. Molecules in the gas phase undergo translational, rotational and vibrational motions, which are described by quantum theory.

Translational motion

The Ideal Gas

- \blacksquare For gases, the interatomic forces within the gas are very weak.
	- \Box We can imagine these forces to be nonexistent
- Note that there is no equilibrium separation for the atoms or molecules
	- \Box Thus, no "standard" volume at a given temperature, a gas expands. For a gas, the volume is entirely determined by the container holding the gas.
- The equation that interrelates these quantities is called the **equation of state**

The equation of state for an ideal gas

 $PV = nRT$

- \mathbb{R}^n This is known as the **ideal gas law**
- *R* is a constant, called the **Universal Gas Constant** $R = 8.314$ J/mol K = 0.08214 L atm/mol K
- р.
П \blacksquare 1 mole of any gas at 1 atm and 0° C is 22.4 L
- р.
П The ideal gas law is often expressed in terms of the total number of molecules, *N*, present in the sample

$$
PV = nRT = (N/N_A) RT = Nk_B T
$$

 $k_B = 1.38 \times 10^{-23}$ J/K is the **Boltzmann constant** $N_A = 6.023 \times 10^{23}$ mol⁻¹ is **Avogadro's constant**

- The molecules obey Newton's laws of motion, but as a whole they move randomly.
	- \Box Any molecule can move in any direction with any speed
	- \Box At any given moment, a certain percentage of molecules move at high speeds

 \Box Also, a certain percentage move at low speeds

- The molecules interact only by short-range forces during elastic collisions
- **Service Service** The molecules make elastic collisions with the walls
- The gas under consideration is a pure substance \Box All molecules are identical
- An ideal gas is often pictured as consisting of single atoms
- Molecular rotations and vibrations have no effect, on average, on the motions considered
- In a real gas all these assumptions are not valid anymore. However, the behavior of molecular gases approximate that of ideal gases quite well

The **compressibility** of Ar

Attractive and repulsive regions due to intermolecular forces

The equation of state for an real gas

$$
PV_m = RT \left(1 + B(T) / V_m + C(T) / V_m^2 + D(T) / V_m^3 + ... \right)
$$

$$
PV_m = RT \left(1 + B'(T) / P + C'(T) / P^2 + D'(T) / P^3 + ... \right)
$$

- **The equations are simple Taylor expansions in** V_m **or P**
- \mathbb{R}^2 **The temperature dependent coefficients** $B(T)$ **,** $C(T)$ **etc.** are called **virial coefficients**
- \blacksquare *B*(*T*) is the second virial coefficient, *C*(*T*) the third virial coefficient etc. These coefficients are often used as constants, i.e. *B* (*T*)*=B* and *C* (*T*)*=C*
- \blacksquare For both equations the virial coefficients are approximately related to each other

$$
B' = \frac{B}{RT} \qquad C' = \frac{C - B^2}{(RT)^2}
$$

Second Virial Coefficients *B* (*T*)

He is pretty much an ideal gas!

Kinetic gas theory

Microscopic World Macroscopic World

 $x_i, v_i, m_i, ...$ *P, V, T, n*

- **Assume a container is a cube of** length *d* (e.g. unit length 1m)
- **Look at the motion of the molecule** in terms of its velocity components
- **Look at its momentum and the** average force
- Assume perfectly elastic collisions with the walls of the container
- \blacksquare The relationship between the pressure and the molecular kinetic energy comes from momentum and Newton's Laws

The relationship between pressure and kinetic energy

$$
P = \frac{2}{3} \frac{N}{V} \left(\frac{1}{2} m v^2 \right) = \frac{2}{3} \frac{N}{V} \overline{E_{kin}}
$$

- **This tells us that pressure is proportional to the** number of atoms / molecules per (unit) volume (*N*/ *V*) and to the average *translational kinetic energy* of the atoms / molecules
- **The derivation of this formula is given in the** textbook
- This equation also relates the **macroscopic quantity** of pressure with a **microscopic quantity** of the average value of the square of the molecular speed
- **One way to increase the pressure is to increase the number** of molecules per unit volume
- The pressure can also be increased by increasing the speed (kinetic energy) of the molecules
- We can take the pressure as it relates to the kinetic energy and compare it to the pressure from the equation of state for an ideal gas

$$
P = \frac{2}{3} \frac{N}{V} \left(\frac{1}{2} m v^2 \right) = \frac{2}{3} \frac{N}{V} \overline{E}_{kin} = \frac{N}{V} k_B T
$$

Therefore, the temperature is a direct measure of the average molecular kinetic energy !

Simplifying the equation relating temperature and kinetic energy gives

$$
\frac{1}{2}mv^2 = \frac{3}{2}k_BT
$$

 This can be applied to each direction, e.g. for a single atom or molecule

$$
\frac{1}{2}mv_x^2 = \frac{1}{2}k_BT
$$

with similar expressions for v_y and v_z and

$$
\frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 = \frac{1}{2}mv^2 = \frac{3}{2}k_BT
$$

- Each translational degree of freedom contributes an equal amount to the energy of the gas
	- \Box In general, a degree of freedom refers to an independent means by which a molecule can possess energy
- A generalization of this result is called the **theorem of equipartition of energy**
- Each degree of freedom contributes $1/2 k_B T$ to the energy of a system, where possible degrees of freedom in addition to those associated with translation arise from rotation and vibration of molecules

■ The total kinetic energy is just N times the kinetic energy of each molecule

$$
E_{tot\ kin} = N\left(\frac{1}{2}m\overline{v^2}\right) = \frac{3}{2}Nk_BT = \frac{3}{2}nRT
$$

- If we have a gas with only translational energy, this is the internal energy of the gas!
- **This tells us that the internal energy of an ideal gas** depends only on the temperature
- **Service Service** The root mean square (*rms*) speed is the square root of the average of the squares of the speeds

□ Square, average, take the square root

Solving for v_{rms} we find

$$
v_{rms} = \sqrt{\frac{\sum v_i^2}{N}} = \sqrt{v^2} = \sqrt{\frac{3k_B T}{m}} = \sqrt{\frac{3RT}{M}}
$$

M is the molar mass and $M = mN_A$

 At a given temperature, lighter molecules move faster, on the average, than heavier molecules because of the mass *m*

$$
v_{rms} = \sqrt{\frac{3k_BT}{m}}
$$