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Newton’s Law of Cooling 

 TS > TE: System S cools until it is in thermal 
equilibrium with E. In an isolated system TS decreases 
while  TE  increases.

 The cooling rate is following the exponential decay 
law also known as Newton’s Law of Cooling: 

( T falls to 0.37 T0 (37% of T0) at time t = 1/a ) 

 T0 is the temperature difference at the starting point of the 
measurement (t=0), T is the temperature difference at t 

T = T0e
at



 Differentiating Newton’s law of cooling

 Rate constant a determines how fast  T  0 

 a depends on: 

 convection, h 

 conduction, k 

 mass, m 

 specific heat, c 

 Newton cooling law can be rewritten as 

 By ploting               against t the rate constant a can be  

   determined.  

d T

dt
= a T

Rate of

cooling

temperature

difference T

ln
T

T0
= at

ln
T

T0



 For time derivatives a ”dot” is used:

 If we are interested in the rate of the heat released we 
   use

   If we assume that m and c approximately stays  

   constant in the cooling process we get 

T
d T

dt
= a T

Q(t) =  cm T0 T[ ]

 

Q =  
dQ

dt
= cm

d T

dt
= acm T

.



 Example: Cooling a cup of coffee with milk.

Question: At what time t should the milk be added to cool down  

    the coffee more efficiently? 

Answer:  TC= 94 oC  ideal brewing temperature for coffee 

    TE= 21 oC  room temperature 

    TD= 40 oC  ideal drinking temperature of coffee 

    TM=   4 oC  temperature of milk out of the fridge 

    VC= 500 mL volume of coffee 

               VM=  50 mL  volume of milk 

    cM = cC  specific heat of milk and coffee are the 
same 



Experiment 1: Instant mixture (t= 0) of water and milk 

Experiment 2: Milk is added at t1 > 0 such that T=TD at t1. 
Temperature of coffee at mixture time t1: 

The question now is whether water cools faster from 
85.81oC to 40oC or from 94oC to 43.6oC  

Qcold  = Qhot  cMmM TM = cCmC TC

cC =cM
mM TM T( ) = mC TC T( )

T =
mMTM + mCTC
mM + mC

T =
0.5kg 94oC + 0.05kg 4oC

0.5kg + 0.05kg
 = 85.81oC

TC (t1) =
mM TD TM( ) + mCTD

mC
= 43.6oC



Newton’s Law 

We do not know the rate constant a, therefore we use (TE=20oC) 

where 1 and 2 stands for experiment 1 and 2. We divide both 
equations: 

Therefore t1>t2 and experiment 2 is about 4.6% faster. 

T (t) = TE + (Ti TE )e
at t =

1

a
ln T TE( ) ln Ti TE( )

t1 =
1

a
ln T1 TE( ) ln T1,i TE( )

t2 =
1

a
ln T2 TE( ) ln T2 ,i TE( )

t1
t2
=

ln T1 TE( ) ln T1,i TE( )
ln T2 TE( ) ln T2 ,i TE( )

= 1.046

T1,i= 85.8 oC 
T1  = 40.0 oC 

T2,i= 90.0 oC 

T2  = 43.6 oC 

Exp.1:

Exp.2:



    Higher temperature in a gas translates into higher 

kinetic energies of the gas atoms or molecules. 

Molecules in the gas phase undergo translational, 

rotational and vibrational motions, which are 

described by quantum theory. 

Kinetic Theory of the Gases 

Translational 
motion

Ekin
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The Ideal Gas 

For gases, the interatomic forces within the gas are very 

weak. 

We can imagine these forces to be nonexistent 

Note that there is no equilibrium separation for the 

atoms or molecules 

Thus, no “standard” volume at a given temperature, a 

gas expands. For a gas, the volume is entirely 

determined by the container holding the gas. 

The equation that interrelates these quantities is called 

the equation of state 



The equation of state for an ideal gas 

PV = nRT 

This is known as the ideal gas law 

R is a constant, called the Universal Gas Constant 

R = 8.314 J/mol K = 0.08214 L atm/mol K 

1 mole of any gas at 1 atm and 0o C is 22.4 L 

The ideal gas law is often expressed in terms of the total 

number of molecules, N, present in the sample 

PV = nRT = (N/NA) RT = NkBT 

kB = 1.38 10-23 J/K  is the Boltzmann constant 

NA = 6.023 1023 mol-1 is Avogadro’s constant 



The molecules obey Newton’s laws of motion, but as a 
whole they move randomly. 

Any molecule can move in any direction with any 
speed 

At any given moment, a certain percentage of 
molecules move at high speeds 

Also, a certain percentage move at low speeds 

The molecules interact only by short-range forces 

during elastic collisions 

The molecules make elastic collisions with the walls 

The gas under consideration is a pure substance 

All molecules are identical 



An ideal gas is often pictured as consisting of 

single atoms 

Molecular rotations and vibrations have no effect, 

on average, on the motions considered 

In a real gas all these assumptions are not valid 

anymore. However, the behavior of molecular 

gases approximate that of ideal gases quite well 



The Non-ideal Gas 

The isotherms of a real gas: Isopentane 

For an ideal gas the 

    compressibility Z 

    is exactly 1.0 at all 

    pressures and  

    temperatures: 

               molar volume 

“ideal gas”

V [cm3/g]

P [atm]

liquid phase

non-ideal gas

Z =
pVm
RT

= 1

Vm =
V

n

critical point
Tc, Pc, Vc

isotherms P~V-1
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The equation of state for an real gas 

The equations are simple Taylor expansions in Vm or P 

The temperature dependent coefficients B(T), C(T) etc. 
are called virial coefficients  

B(T) is the second virial coefficient, C(T) the third virial 
coefficient etc. These coefficients are often used as 
constants, i.e. B(T)=B and C(T)=C 

For both equations the virial coefficients are 
approximately related to each other 

 

PVm = RT 1+ B(T ) /Vm + C(T ) /Vm
2 + D(T ) /Vm

3 +…( )
PVm = RT 1+ B '(T ) / P + C '(T ) / P2 + D '(T ) / P3 +…( )

B ' =
B

RT
C ' =

C B2

RT( )2



100 K 273 K 373 K 600 K

He 11.4 12.0 11.3 10.4

Ar -187.0 -21.7 -4.2 11.9

N2 -160.0 -10.5 6.2 21.7

O2 -197.5 -22.0 -3.7 12.9

CO2 -149.7 -72.2 -12.4

Second Virial Coefficients B(T) 

He is pretty much an ideal gas!



Kinetic gas theory 

Microscopic World      Macroscopic World

       xi, vi, mi, …      P, V, T, n



Assume a container is a cube of 
length d (e.g. unit length 1m) 

Look at the motion of the molecule 
in terms of its velocity components 

Look at its momentum and the 
average force 

Assume perfectly elastic collisions 

with the walls of the container 

The relationship between the pressure 

and the molecular kinetic energy 

comes from momentum and 

Newton’s Laws 



The relationship between pressure and kinetic 
energy 

This tells us that pressure is proportional to the 
number of atoms / molecules per (unit) volume 
(N/V) and to the average translational kinetic 
energy of the atoms / molecules 

The derivation of this formula is given in the 
textbook 

P =
2

3

N

V

1

2
mv2 =

2

3

N

V
Ekin



This equation also relates the macroscopic quantity of 
pressure with a microscopic quantity of the average 
value of the square of the molecular speed 

One way to increase the pressure is to increase the number 
of molecules per unit volume 

The pressure can also be increased by increasing the speed 
(kinetic energy) of the molecules 

We can take the pressure as it relates to the kinetic 

energy and compare it to the pressure from the 

equation of state for an ideal gas 

Therefore, the temperature is a direct measure of 

the average molecular kinetic energy ! 

P =
2

3

N

V

1

2
mv2 =

2

3

N

V
Ekin =

N

V
kBT



Simplifying the equation relating temperature and 
kinetic energy gives 

This can be applied to each direction, e.g. for a single 
atom or molecule  

with similar expressions for vy and vz and 

1

2
mv2 =

3

2
kBT

1

2
mvx

2
=
1

2
kBT

1

2
mvx

2
+
1

2
mvy

2
+
1

2
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2
=
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2
mv2 =

3

2
kBT



Each translational degree of freedom contributes an 
equal amount to the energy of the gas 

In general, a degree of freedom refers to an 
independent means by which a molecule can 
possess energy 

A generalization of this result is called the theorem  
of equipartition of energy 

Each degree of freedom contributes    1/2 kBT   to 

the energy of a system, where possible degrees of 

freedom in addition to those associated with 

translation arise from rotation and vibration of 

molecules 



The total kinetic energy is just N times the kinetic energy 

of each molecule 

If we have a gas with only translational energy, this is the 

internal energy of the gas! 

This tells us that the internal energy of an ideal gas 

depends only on the temperature 

The root mean square (rms) speed is the square root of the 

average of the squares of the speeds 

Square, average, take the square root 

Solving for vrms we find 

M is the molar mass and M = mNA 

Etot  kin = N
1

2
mv2

=
3

2
NkBT =

3

2
nRT

vrms =
v
i

2

N
= v2 =

3kBT

m
=

3RT

M



   At a given temperature, lighter molecules move faster, on  

   the average, than heavier molecules because of the mass m 

Some rms speeds 

Gas Molar mass (g/mol)           at 20oC (m/s) 

H2 2.02 1902 

He 4.00 1352 

H2O 18.0 637 

Ne 20.2 602 

N2 or CO 28.0 511 

NO 30.0 494 

O2 32.0 478 

CO2 44.0 408 

SO2 64.1 338 

vrms

vrms =
3kBT

m


